8

/

OCTOBER 2005

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 6, No.4

A New Approach to CAD/CAM Systems Data
Exchange Using Plug-in Technology

Y. A. Chernopyatov, W.j. Chungz#andC. M. Lee2#

1 Researcher, Machine Tool Research Center (RRC), Changwon National University, Changwon, Kyongnam, South Korea
2 Professor, School of Mechatronics, Changwon National University, Changwon, Kyongnam, Scuth Korea
Corresponding Author / E-mail: cmlse@sarim.changwon.ac.kr, TEL: +82-55-278-7572, FAX: +82-55-263-5221

KEYWORDS : CAD/CAM, Exchange Standards, Plug-in, Dynamic Link Library

Interoperability has been the problem of CAD/CAM systems. Starting from 1980's, national and international
organizations have addressed the issue through development and release of standards for the exchange of
geometric and nongeometric design data. To CAD/CAM vendors, the task of interpreting and implementing these
standards falls into their products. This task is a balancing action between users' needs, available development
resources, and the technical specifications of standards. This paper explores an area of CAD/CAM systems
development, particularly the implementation of the effective exchange files translators’. A new approach is
introduced, which proposes to enclose all the translation operations concerning each exchange format to a
separate DLL, thus making a “plug-in.” Then, this plug-in could be used together with the CAD/CAM system or
with specialized translation software. This approach allows to create new translators rapidly and to gain the
reliable, high-efficiency, and reusable program code. The second part of the paper concerns the possible problems

of translators’ development.
ambiguity in standards.
systems.

These difficulties often come from the exchange standards’ misunderstanding or
All examples come from the authors’ practice experiences of dealing with CAD/CAM

1. Introduction

Nowadays a lot of CAD/CAM systems are widespread in the
world market. To be sure, each of the CAD/CAM software developer
tries to make its system reliable, convenient and effective. As
manufacturing and construction industries become more global, there
is growing demand to exchange the digital definition of products
between different organizations as the product moves from design
through manufacture to long-term support. One of the problems,
which should be solved by every developer, is the format for the
internal data representation. Obviously, this format should be compact
and precise. The operational time of input and output is not so critical
as before, but still important. When such an internal model or format
is designed, developers often use some tactics or special solutions,
and the internal formats usually are the subject of patents. For an
example, we can consider the DWG binary format, which is
introduced by AutoDesk Inc., for the AutoCAD®. Though
AutoCAD® can easily use the open DXF text format for importing or
exporting drawings, it uses the DWG format as the main format for
storing drawings. Also we should note that when the new version
releases, the internal format may change. The characteristic of such
changes could be different. In turn, this renders the problem of
compatibility and succession. Here is only small number of problems
in format area with which developer might be confronted.

The next question is the compatibility between the newly
designed and existing systems. In general, all systems could be

Manuscript received: January 16, 2004 / Accepled: January 4, 2005

39 ¢

divided into three main categories — “heavy,” “medium” and “light”
systems. The “heavy” systems are the most powerful ones, and do
large assemblies, specialized design, engineering calculations, CNC
program generations and so on. Since they are usually based on unit
principle, user may purchase only necessary units. “Medium” systems
usually possess the truncated abilities of “heavy” systems. In addition,
the “light” systems are usually intended only for drawing and plotting
so that they are the cheapest.

Usually an enterprise exploits only a few workstations with
“heavy” systems to perform complicated and time-consuming tasks,
and the basic works are submitted to average and low-class
workstations, equipped with “medium” and “light” CAD/CAM
systems. Such approach allows the considerable gain in the sense of
costs of design and manufacturing. However, in turn, it requires
CAD/CAM systems compatibility on the level of exchange formats.
The usage of exchange files instead of the internal formats is caused
by several reasons. First, internal formats are the private information
of a developer company as a rule. It seems to be simple to develop
interfaces between systems as required, but this rapidly produces a
large number of translators, which are expensive for maintaining.
Four systems require 12 interfaces - for 10 systems, this number
grows to 90 and the problem rapidly spirals out of control, since
change in one system may require changes to be made and tested to
all the interfaces of the system.

The solution is to use the one common exchange format, but
unfortunately this idea is unreal, simply because designers do not yet
have any common standards. In these conditions, CAD/CAM

Copyright (c) 2005 by KSPE

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 6, No4

OCTOBER2005 / 9

engineers should be able to “understand” at least general industrial
data exchange standards, which can be confirmed by the users’ needs
as shown in Fig.1 1.

Always
¥

Sonet imes
31%

Fig. 1 Percentage of data exchange involving translators between
different CAD systems

2. Background

At present there are several popular exchange formats, widely
used for data sharing between CAD/CAM systems. The DXF format
was developed by AutoDesk, Inc. for AutoCAD® software and
initially was just a graphics format, with limited its capabilities. While
the first versions of this format contained only plane elements, 3D
elements and solids were added in the later versions 2.

The STEP standard ° defines an integrated information model,
which supports the multiple views of product data for different
applications. All STEP information models are defined by using the
EXPRESS data definition language (Part 11). The EXPRESS
language has been developed in the mid-1980s to provide the
necessary information modeling constructions to support the complex
relationships of product information. The use of the EXPRESS
language is supported by a range of software tools, which can assist
the process of modeling and developing translators. Typical
implementations use STEP to combine the information on the shape
and other characteristics of individual parts with assembly structures
to form a single integrated representation of a complex assembly or
product. This information is gathered from a range of application
systems, then consolidated into a STEP file, which can be transferred
to other companies and unloaded into their corresponding systems.
The advantage of combining this data is that it guarantees the
consistency for information deliveries, and avoids the administrative
cost of ensuring the consistency of data between multiple systems.

IGES (Initial Graphics Exchange Specification), neutral data
format, describes product design and manufacturing information
created and stored in CAD/CAM systems. Its purpose is to aid the
exchange of geometry, annotation, and structure information between
dissimilar systems. It has been initially developed and accepted as an
USA national standard. IGES Version 1, published in 1980,
included only basic capabilities for drawings created with wire frame
geometry. The standard has been consistently updated. Since Version
5.1, the B-rep solids support has been added *. Though IGES is not
expected to grow considerably after Version 6, it will be maintained
as long as there is market demand for it, or it will be completely
replaced with STEP standard.

VDATFS has been published as a German national standard in
1986. A number of automotive manufacturers and suppliers
throughout Europe use the standard to exchange surface data used in
the design of automotive tooling and components such as body parts,
injection molded parts, seats, panels, and so on. One of key features
of the standard is the simplicity of translator’s implementation. Such
well-known automobile companies, as BMW, VW, Opel, Porsche,
Daimler-Benz as well as machine tools manufacturers Hella, Bosch
have worked over this project.

Once again we can notice that such numbers of standards mean
that CAD/CAM system should be able to read and write at least the
most popular of them. We will examine the question of the data
exchange implementation in the CAD/CAM systems. There are two
ways to implement the translation capability on the system. The first
way is to implement the reading/writing procedure directly on the
program code. We call this way “internal” translator. For example, the
import procedure could be represented as shown in Fig. 2.

Data —“> Data
translation
function

Input
'Exchange
file data

read function

Display
imported
data

Fig. 2 Internal translator (import procedure)

What kinds of advantages and disadvantages does the internal
translator have? Main advantages are — the simplicity of procedure
implementation, the highest speed of data exchange, the minimum
memory and time consumption. This approach is still used in several
systems, such as ZCad or Camax, even though the disadvantages can
be reduced to zero benefit. First of all, the system becomes too rigid
to make any change or correction fast. For example, if you find an
error in reading or writing procedure, you should recompile the whole
system or translation unit. This, in turn, leads to numerous service
packs release and highly degrades the responsibility. Besides, the
system reliability strongly decreases. Some system could even crash
down without saving any data only due to an error in a data exchange
algorithm.

The solution for such kind of problem often lies in developing the
“standalone” translator, which could be implemented as DLL
(Dynamic Link Library) or even separate EXE (executable) unit. In
this case translation procedure (import) is illustrated in Fig. 3.

Input Data H» Data
exchange reading translation
file data function function

CAD/CAM
internal format

data *—

read function)

Translated data
(internal format)
writing function

T e .

Display
the

imported
data

Fig. 3 Standalone translator (import procedure)

The dashed area is the standalone translator working stage. As a
rule, the standalone translator is implemented as a separate executable
application and could be used as either translator or exchange files
generator. When this translator is used in a CAD/CAM system, the
entire process can be passed “transparently” to a designer. Using this
approach, we gain the ability of separate usage (the re-usage of
program code) of the once written application and more system

10 / OCTOBER 2005

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 6, No.4

stability. This way of translation is used, for example, for some
Russian CAD/CAM’s such as Gemma3D (GEMMA Ltd.) > and
Kredo (NIC ASK) systems.

But this method may not be considered as the best one. The
separate executable application requires writing the intermediate file
in some format, that is, internal format, and this file then should be
loaded by the CAD. This results in the disk space or time
consumption. The T-FLEX CAD/CAM (Top Systems, Ltd.) system
utilizes this system.

3. The Plug-in Technology in Data Translation

Contents In this paper we will consider the ability to develop
translator in a fast and reliable way, and to provide good code
reusability together with less software modifications. The way is to
implement the translators as plug-ins. The plug-in for Windows
platform is a DLL (Dynamic Link Library), explicitly linked with the
application. The plug-in has some predefined number of functions
that application may call. For the case of translator, we can illustrate
the following minimum of predefined functions, as shown in Fig. 4.

C = D
Select the import format

l Load import DLL for selected format |

v

Call the import function from DLL and transfer data to the internal
model from the exchange file

v

’ Load export DLL for selected format |

v

Call the export function from DLL and transfer data fro m the internal
model to exchange file

v

Unload export and import DLLs

Fig. 4 Plug-in translator used as CAD/CAM system plug-in (complete
cycle)

Import function should read the input file in exchange format and
translate it to the internal representation (model). Export function
should translate the necessary entities from the internal representation
(model) to a selected exchange format and then write the output file.
Setup function is optional and could be used to adjust some internal
settings of DLL, such as output tolerance or the way of solid model
exporting (explode them to bounded surfaces or export as solids, for
example).

Since we use the same naming system both in caller application
and in plug-in, the application can simply load the library and get the
function entry point via calling to GetProcAddress function or its
analog in languages, other than C++. Application then may call this

function using its address to perform the required action as shown in
Fig. 4.

What advantages does the plug-in approach have? First of all, the
application has “loosely coupled” interface with the plug-in. It means
that we may modify or change the plug-in DLL as we need without
any modification in the program code of caller application. Update is
as easy as file replacement. The only thing we need to do is to keep
the predefined function names untouched both in application and in
plug-in. We can have even more abilities, such as granting the user’s
right to access to the internal kernel (model) and thus write it’s own
plug-in.

One more important difference between standalone translator and
the proposed method is the possibility of direct passing the pointer to
the internal model between translator and calling application. In other
words, translator immediately fills the model with entities, while
standalone translator should create the temporary file, which later
would be read by the system.

As far as plug-in can be explicitly linked to application, it is
advantageous over implicit linking. For example, if the DLL is not
found or failed, during runtime the application can display an error
message and still continue. It could be easily seen that using
traditional method the number of translators for all necessary formats
interfacing will be 2n, where n is the number of present formats (in
the worst case of implementing the scheme of “one-to-one”
translating). At the same time the number of plug-ins will be the same
as that of standards.

The idea of this approach is not simply putting all methods into
DLL and uses them instead of API calls. The most important benefit
that we can gain from this approach is the remarkable code re-
usability, which greatly improves the developing process. In other
words, the plug-in, once made for the CAD/CAM system with
modeling kernel “XYZ” could then be used in another system with
the same “XYZ” kemnel, or even as the plug-in for specialized
executable translator (see Fig. 5).

The modeling kernel “XYZ”

Exchange file Exchange file view

CAD/CAM translator utility

[IGES plug-in] [STEP plug-in] DXF plug-in

Fig. 5 The re-usability of plug-in’s in different applications, based on
the same modeler kernel

It can be noticed that there are two major issues in data exchange
process. The first is the increasing efficiency of data exchange
application, the second is the increasing the efficiency of data
exchange itself (for example, in case of systems based on different
mathematics kernels). We should note that the proposed approach
deals with the first issue, while the second is the subject for further
researches. Indeed, the translation accuracy strongly depends on the
mathematics kernel used for the internal geometry structure
representation. It can be easily seen if we consider the solid and
surface geometry in the different exchange formats as an example. If
a target format does not have the solid geometric items, but only
surface, all solids should be reduced to the surfaces (using projection
operation). Depending on the mathematics kernel, this operation may
cause the accuracy lost. Thus the developer is completely
responsible for the whole internal conversion implementation.

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING ~ Vol. 6, No4

OCTOBER2005 / 1

4. The Plug-in Technelogy in Data Translation

We will show how it is possible to program the necessary
functions for plug-in implementation. Qur plug-in will be able to read
and write the files of an imaginary exchanging format. It is assumed
that we are developing the plug-in’s for the abstract solid modeler
named the “XYZ.” The kernel is built upon the object—oriented
concept. The internal model structure is a list of entities (for
simplicity) and a whole model enwrapped in the one class, named the
“CEntityManager.”

It is well known that programmers should keep the following rule
while writing the DLL. That is, the memory allocated in the DLL’s
address space should be freed in the same DLL’s address space. In
other words, if we pass the pointer from the caller application to DLL
function and DLL allocates the memory inside this function, this
memory must be released in some other DLL function not inside the
caller application.

Concerning our sample application, we see that the
CEntityManager belongs to the caller application, but the import of
entities from an input file to the model takes place in DLL’s function
“Import.” Hence we can write the set of functions, which will fulfill
our needs specified above:

int Import(LPCTSTR szFileName, CEntityManager *&pEM);

int Export(LPCTSTR szFileName, const CEntityManager
*&pEM);

int MemFree(LPCTSTR szFileName, CEntityManager *&pEM);

Start

Load export DLL for

destred format

l

Call the export function from DLL
Export(“drawing.abc”,
(CEntityManager*&) m_CE);

v
‘ Unload export DLL |

End

Fig. 6 Block-diagram of the export procedure using plug-in DLL

Now we will discuss the Import and Export functions more
thoroughly. The Import directly affects the state of CEntityManager
instance (allocates memory and adds new entities to the model), while
Export function does not affect the one as shown in Fig. 6. In other
words, the state of CEntityManager will change after calling Import
function. It means that the better way is to create a new instance of
CEntityManager class and pass it to the Import function, which will
fill it with imported entities, and then append or copy its contents to
the main caller model. After this, it is safe to call the MemFree
function to clean the temporary model instance, as shown in Fig.7.

Below we would like to provide the detailed description of
sample application implementation to illustrate the proposed
approach. For simplicity we removed excessive portion of code, and
left only essentials. All examples are given in Visual C++.

Let’s assume that our internal model represents a simple list of
pointers to geometric entities, which are inherited from one abstract
class named “Geometricltem” (of course, in real industries
applications it is more complex). This class consists of the basic set of
properties and interface methods. Thus, the class for this model may
contain: the items list, add, get, remove item functions and other
service procedures and functions.

o D
v

Load DLL for desired |

v

Declare the temporary model
instance
CEntityManager

v

Call the import function from DLL
Import(“drawing.abc”,
(CEntityManager*&) pTmpCE);

v

Append data from temporary model
to main application model
m_CE.Append(pTmpCE);

v

Call the memory deallocation
function from DLL
MemPFree((CEntityManager*&) pTmpCE);

v

| Unload DLL |

v
C D

Fig. 7 Block-diagram of import procedure using plug-in DLL

The above described model is the core part of caller application.
The pointer to this model should be passed to the Import or Export
functions as described before. Besides the model itself, we will need
some support structures. Using them caller application can exchange
some service data with plug-in. Here is a simple class for this

purpose:

struct CDLLInfoStruct
{
CString DLLName; // name of plugin DLL,
CString DLLExt; //" extension(s) of exchange files
proceed by this plug-in
CString DLLExtra; // extra text information (for example,
plug-in description)

}s

Now we see how caller application can process the data exchange.
First of all, we should define the forward declarations of prototypes of
pointers to functions, used in plug-ins. Since the plug-ins are
explicitly linked to main application, it will use the pointers to have
an address of function in plug-in DLL.

// obtain information about plug-in
typedef int

(*LPFNDLLGETINFO)(CDLLInfoStruct&);
// import function
typedef int

(*LPFNDLLIMPORT)(LPCSTR, CEntityManager *&);
// export function
typedef int

(*LPFNDLLEXPORT)(LPCSTR , CEntityManager *&),
/I cleanup function
typedef int
(*LPFNDLLFREEENTITYMANAGER)(CEntityManager *&);

12 / OCTOBER 2005

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol 6, No.4

The last one is very important. If the memory is allocated in DLL
during operating, it should be free in the same DLL. This is the
feature of DLL usage that we should obey.

Suppose that in our main application the name of model variable
(of type “pointer to the CEntityManager™) is m_pModel. Here goes
the sample implementation of import procedure in a main application.
In plug-in in the briefest way, we assume that all necessary checking
and initializing (including model initializing) is already done:

BOOL CMainApplication::Onlmport()

{

LPFNDLLIMPORT IpfaDllimport;

HANDLE hlmportDII;

/Noad the import plug-in DLL

hImportDII=AfxLoadLibrary(sImportPluginName);

if (!hImportDIl) return FALSE;

//get pointer to plug-in import function by its predefined name
“Import”

IpfDIlIImport=(LPFNDLLIMPORT)GetProcAddress(hImportDIl
"Import";

if (pfnDIlTmport) return FALSE;

//call the plug-in import function

if(NpfmDIlImport(sFromFileName,
FALSE;

*&m_pModel)) return

return TRUE;
}

The import function in plug-in should be able to read the
exchange file, convert each entity to the internal representation and
fill up the provided entities list. Let’s assume that we are dealing with
the plug-in, responsible for the STEP exchange format processing. In
plug-in interface section we should declare the import and export
functions as “exportable.” It is convenient to hide (encapsulate) all
methods of working with particular exchange standard in one class,
and use its interface methods in exported functions. Detailed
description of STEP processing is out of this paper topic, thus we are
concentrating on implementation nuances.

The function of obtaining the information from DLL is
straightforward:

__declspec (dllexport) int GetDLLInfo(CDLLInfoStruct& inf)

{
AFX MANAGE_STATE(AfxGetStaticModuleState());

inf DLLName="StepDLL";

inf DLLExt="stp;step";

inf DLLExtra="STEP ISO-10303 files";
return (1);

}

The input file has the name of STEP file to be translated into
internal representation.

__declspec (dllexport) int
CEntityManager *&pEM)
{

Import((LPCTSTR szFileName,

AFX MANAGE_STATE(AfxGetStaticModuleState());
// all works for reading, compiling and translating STEP
file are encapsulated in special CStepFile class
CStepFile sf;
// call the internal procedures of STEP file processing
int bRes = sf.Internallmport(szFileName, pEM);
// return the result of operation
return bRes;

}

By analyzing the method described above, we can easily see that
it is more efficient to write one plug-in. It implements only import
and export functions for single format, compared with any other

approach.

As some kind of addendum we would like to explore a subject of
subtle errors appearing due to misunderstanding of standard or
inaccurate reading/writing procedure implementation. As an example,
we will use IGES and STEP exchange formats.

Our first example is STEP exchange format. As the STEP format
described using EXPRESS object-oriented language, all entities stay
in “parent-descendant” relations. Thus ISO 10303 specification [3]
allows two slightly different versions of exchange file generation. The
first version is writing the descendant entity containing all parent
entities, moreover each descendant entity in this series is written with
its only set of parameters, distinguished from parent’s parameters. See
the example 1:

Examplel.

#286=(BOUNDED_SURFACE()B_SPLINE_SURFACE(2,2,((#2
16,#223 #230,#237 #244 #251 #258 #265,#272),(#217 #224,#231 #2
38,#245#252 #259,#266,#273),(#218,#225,#232 #239,#246,#253 #2
60,#267 #274),(#219,#226 #233 #240,#247 #254,#261 #268 #275),(#
220,#227 #234 #241 #248 #255 #262 #269,#276),(#221,#228 #235 #
242 #249 #256,#263 #270,#277),(#222,#229,#236,#243 #250,#257 #
264,#271,#278)),.UNSPECIFIED.,F,.T.,. U)(3,2,2,3),(3,2,2,2,3),(-
2.030,-
0.676,0.676,2.030),(0.0,1.570,3.141,4.712,6.283185307179600), .UN
SPECIFIED.)GEOMETRIC REPRESENTATION ITEM(RATION
AL_B_SPLINE_SURFACE(((1.0,0.707,1.0,0.707,1.0,0.707,1.0,0.70
7,1.0),(0.779,0.551,0.779,0.551,0.779,0.551,0.779,0.551,0.779),(1.0,0
.707,1.0,0.707,1.0,0.707,1.0,0.707,1.0),(0.779,0.551,0.779,0.551,0.77
9,0.551,0.779,0.551,0.779),(1.0,0.707,1.0,0.707,1.0,0.707,1.0,0.707,1
.0),(0.779,0.551,0.779,0.551,0.779,0.551,0.779,0.551,0.779),(1.0,0.70
7,1.0,0.707,1.0,0.707,1.0,0.707,1.0))) REPRESENTATION_ITEM(")
SURFACE();

This example shows the entity “RATIONAL B_SPLINE_
SURFACE,” which inherits the whole set of parent entities as shown
in Fig. 8.

geometric_represenation_item I

\—{ surface]

L1bounded_surfa<:e l

b_spline_surface

u_degreev_degree :int
control_points_list : int array
u_closedv_closed,self_inters : logical

L b_spline_surface_with_knots
u_multiplicities, v_multiplicities : int array
u_knots, v_knots : double array

rational_b_spline_surface
weights_data : double amray

Fig. 8 Hierarchy of surfaces in STEP format (fragment)

Each entity adds new data members and inherits the parent’s data.
For “B_SPLINE SURFACE?” it is the u and v degree, control points
array (as references to existing points entities, denoted by “#” sign),
surface type, flags of closeness and self-intersection. In turn,
“B_SPLINE_SURFACE_WITH_KNOTS?” contains multipliers atray,
knot array, and knot types descriptor. The “RATIONAL_B_SPLINE_
SURFACE” will add the weights array. Thus using this variant to
read/write one descendant “RATIONAL B SPLINE SURFACE”
entity first, we should deal with the whole family of parent entities.
The second variant implies that each descendant entity should contain
the whole set of parameters. It inherits from its parents plus its own
ones. See example 2:

INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING Vol. 6, No.4

OCTOBER2005 / 13

Example 2.

#142=B_SPLINE_SURFACE WITH_KNOTS('*SUR2151',5,1
S((#143,#144),(#145 #146),(#147,#148),(#149,#150),(#151,#152),(#
153,#154),(#155,#156),(#157,#158),(#159,#160),(#161,#162),(#163
H164),(#165,#166),(#167,#168),(#169,#170),(#171,#172),(#173,#1
74)),.UNSPECIFIED.,.U.,.U.,.U.(6,5,5,6),(2,2),(0.000,1.000,2.000,
3.000),(0.000,1.000),.UNSPECIFIED.);

Unlike example 1, we see that only one entity description is
present - B_SPLINE_SURFACE WITH _KNOTS, and whole
parameters are given either. Considering the above samples, it is
obvious that a developer should implement different procedures to
read/write the same entities.

The next example is the IGES exchange format. Sometimes
developers do not test their translators thoroughly, so that the files
exported by one system could not be read by another system. Rational
B-spline curve (entity number 126) and rational B-spline surface
(entity number 128) [4] are good illustrations for above-mentioned
problems. These entities have their last parameters to be set to the
minimum and maximum parameters of entity function (t for curve
and u, v for surface correspondingly). Indeed this specifies the entity
trimming - A(u) for curve and o(u, v) for surface. While proceeding
the export, some systems perform “reparameterization” of splines
(especially when spline is trimmed with 3-dimensional vertices) in
such a manner that the knots vectors remain the same, but the
minimum and maximum parameters exceed the bounds set by knot
vectors. The result is a failure of consequent import process of
another system.

Next unobvious question is the trailing zeroes in floating-point
numbers. Some exporting translators write the zero after the floating-
point dot, while some omit them. But in turn import systems could
not “‘understand” the numbers with dot but without trailing zero.

Another hidden catch is the terminating section of IGES file. The
terminating section contains service information about starting section
line number, directory entry line number, etc. Some systems such as
ZCad just omit some parameters of this section. Though importing
system could calculate such kind of information by scanning a file
itself, a number of CAD/CAM’s just do not perform the import at all
if they would find an error in a terminating section.

5. Conclusion

There is a lot of problem with which developers might face
during the CAD/CAM implementation. One of these problems is the
problem of data interface with other systems. Unless one universal
standard appears, each system should support the modern industrial
exchange standards. This paper considers the ways of implementing
such translators and introduces the new approach based on the plug-in
technology. First of all, this approach helps the efficiency of
translators increase. Then, we improve the quality of the translators
implemented on its base, because they are more stable and reliable
comparing to other methods. Also, we gain high reusability, which is
very important in the process of developing.

In the second part of the article, the some practical questions of
data exchange were considered. Problems of STEP and IGES data
transfer were examined, and practical recommendations were given.
These recommendations are based upon the analysis of wide variety
of modern CAD/CAM systems. Following these conclusions may
help to plenty of possible errors during the development of translators.

ACKNOWLEDGEMENT

This work was supported by the Korea Science and Engineering
Foundation (KOSEF) through the Machine Tool Research Center at
Changwon National University.

REFERENCES

1.

"Data Exchange - Is Sharing Really A Pain,” CAD SPAGHETTI,
October 2001 Issue, 2001.

. Jump, D. N, "AutoCAD Programming. 2nd edition," McGraw-Hill

Companies, 1991.

. ISO 10303-203 Industrial automation systems and integration -

Product data representation and exchange - Part 203 (IS):
Application protocol: Configuration controlled design

. The Initial Graphics Exchange Specification (IGES) Version 5.1 —

IGES/PDES Organization, USA, 1991.

. Vermel, V., Nikolaev, P.,, "GeMMa-3D for Windows: increasing

productivity," SAPR T GRAPHICA, Vol. 4, 2000.

Course, D. L., "Developer roundtable: STEP vs.

CADALYST Magazine, October Issue, 2001.

IGES,"

. Gubich, L., Ivanets, G., Hamets, N., "Design and manufacturing of

molds in the integrated system SolidEdge - GeMMa-3D," SAPR I
GRAPHICA, Vol. 11, 2000.

. Mason, H., "ISO 10303-STEP. A key standard for the global

market," ISO Bulletin, January, pp. 8-13, 2002.

. Stevens, T., "Viewpoint -- Now You're Speaking My Language,”

Industry Week.com, Columns - Publication Date 7.3.2001, 2001.

