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In the dynamic analysis of a mechanism, if one or more of the components are flexible, then the simulation will not be
accurate because of the violation of the rigid body assumption. Mode shapes are used to represent the dynamic
behavior of an elastic structure. A modal synthesis method which uses a combination of normal modes, constraint
modes, and attachment modes, was used to represent effectively the elastic deformation of a flexible multibody.

Since the combination of these modes should be different for each type of connecting part, the modal synthesis method
was studied for the various types of interconnecting joints. In addition, the analysis procedure for the flexible body
was explained. A satellite system with flexible solar panels was chosen as an example to show the effectiveness of the

proposed method.

1. Introduction

Flexible multibody systems such as spacecrafts, robot
manipulators, and industrial machinery are composed of both rigid
and elastic bodies. Most of the simulation methods for elastic
deformation employ the component mode synthesis (CMS) method.

Deformation modes and corresponding modal coordinates are
used in the CMS method to capture the elastic effect of the flexible
component in the system. Normal modes are used to account for the
structure’s general behavior while static modes, like constraint
modes and attachment modes, are used to capture the local joint
induced deformation effectively. The selection of these modes
affects the accuracy of the simulation results. However, it is a very
difficult problem to decide the number and type of modes that
should be used to properly represent a flexible structure.

In this paper, the results of a model with normal modes are used
to select the proper number of static modes and their boundary
conditions.

The number of proper normal modes is decided using a
convergence test which compares the results of a small and large
number of normal modes. A step by step procedure for the flexible
body analysis is explained with an example problem of a satellite
system.

2. Modal Synthesis Method and flexible Body Analysis

2.1 Types of modes
A typical flexible component is shown in Fig. 1.
position of a point p can be represented as

The global
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where r is the global position vector of the body reference center,
A is the transformation matrix from the body reference frame to
the global inertial frame, Sop is the initial position vector of the
point P from the body reference center, and u is the
displacement vector due to deformation. The displacement vector
u can be approximated by a linear combination of deformation
modes like equation (2).
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Fig.1 Global displacement of a point p in an elastic component
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where ¢i is a modal vector and n; is the corresponding modal
coordinate. The individual M mode should be linearly independent
to each other. An elastic component can be described by the second
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order matrix differential equation of the form

M _X
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where X, denotes nx1 displacement vector, fn denotes nx|1
force vector, and M,,, and K, represent nxn mass and stiffness
matrices respectively. By using Eqn.(3), normal modes can be
obtained by solving an eigenvalue problem of the form

(K, —0’M,,) =0 @)

Normal modes are used to account for the general elastic
deformation of the flexible structures. If a large force is imposed at
a nodal coordinate, then the static mode is more effective.
Attachment modes and constraint modes are two types of static
modes. The constraint mode is obtained by imposing a unit
displacement on one of the nodal coordinates, and the attachment
mode is obtained by imposing a unit force on one of the nodal
coordinates.

Those two types of modes generate similar results. All used
normal modes and static modes must be normalized to have the
same magnitude and to reduce the numerical, error and
orthogonalized to be independent each other.

Differential algebraic equations(DAE) of motion for considering
flexible effect are described in Appendix 1.

2.2 Boundary conditions and mode selection

To obtain deformation modes of the elastic component, boundary
conditions have to be applied. Usually, nodal coordinates of
interconnected joints are selected as boundary conditions. A few of
the lowest frequency for normal vibration modes have been used in
previous literatures. Some literatures suggest that the number of
normal modes can be selected up to the mode whose frequency is
twice the interested frequency. In this study, a convergence test is
applied to decide proper set of normal modes. To select the proper set
of static modes, analysis results have to be examined. Since most
mechanical systems are over constrained resulting in redundancy, if
only rigid bodies are used, the reaction forces of all joints cannot be
obtained. So the result of a model with normal modes is used. With
this information, the static mode set can be decided.

2.3 Analysis procedure

First, a rigid body model has to be prepared. Since most flexible
components are over constrained, rigid body analysis cannot provide
all the information about the reaction forces of each interconnected
joint. Therefore, normal modes are used for the elastic component. At
this stage, all interconnected joints are used as fixed boundary
conditions. The results of flexible body analysis highly depend on the
accuracy of the used modes, so the used normal modes have to be
verified carefully. Analysis of the results will provide reaction force
information for all the interconnected joints. Constraints with smali
reaction forces do not have to be considered as the static mode set. On
the other hand, constraints with large reaction forces are used as static
modes. Finally, normal modes and static modes are combined to
calculate the elastic deformation of the elastic component.

3. Numerical Simulation and Test

Fig. 3 shows a satellite system with 6 solar panels. Initially, panels
are stowed to the main body. During the deployment process, when
the panel reaches at a designed angle, the panel is locked. At this
moment, a large impact force is applied to the body. This may cause
structural damage and affect the control of the satellite. So a reliable
dynamic model of the deployment system is required.
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Fig. 2 Flow diagram of flexible multibody analysis

Solar panels are relatively flexible, and rotational motion is
generated with many strain energy hinges which have nonlinear
characteristics. To model strain energy hinges, revolute joints with
rotational springs can be used. But the model will become an over
constrained system if only rigid bodies are used.

Dynamic simulation model is shown in Fig. Al and A2 of
Appendix 2.
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Fig. 3 A satellite system for multibody dynamics

Thus, the analysis results of a model with only rigid bodies cannot
supply the joint reaction forces of all the hinges due to redundancy in
the model. In addition, elastic energy of the panel may be significant
in the calculation of reaction forces on the joints. So the panels were
modeled as flexible bodies. The method explained in the previous
section was applied to the system. The moments of inertia of the
satellite(Ixx, lyy, [zz) were 3,490, 3,637 and 1,679 Ib; “in® and those
of solar panel were 7.45, 9.58 and 2.14 Ib; ‘in®

3.1 Selection of Modes

The main body and two yokes, which connect the main body and
two adjacent panels were modeled as rigid bodies, and four solar
panels were modeled as flexible bodies. All four panels had the same
geometry and had several layers of composite materials. The
property is shown in Table Al of Appendix 2.
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Fig. 4 Panel mode shape 53.0Hz(1%), 61.5Hz(2™)

The thin shell linear quadrilateral elements and composite
materials were used for the finite element model of the solar panel.
NASTRAN 70.5 was used for the finite element analysis of the solar
panel(Fig. 4, Appendix 2) and DMAP was used to calculate static
modes, and DADS was used for dynamic analysis of the satellite. All
kinematic constraints were used as boundary conditions for the
normal mode analysis.

Thirty normal modes were used for each panel. Fig. 5 shows
reaction forces on the R1 revolute joint. The result shows that the x
and y direction forces are significant and other direction forces are
negligible. Thus x, y coordinates of the node where the R1 joint was
connected were chosen to calculate static modes. The R2 joint also
showed similar results. So panel 2 had four static modes. Table 1
shows boundary conditions and forcing conditions of static modes
decided for panel 2.
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Fig. 5 Response of reaction force(X) on R3 joint
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Fig. 6 Response of reaction force(Y) on R3 joint
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Table 1 Loads and boundary conditions for static modes on panel 2

case Joint X 1Y | Z)|RX|RY| RZ
revolute 3 1 010 0 0 | free

1 revolute4 | 0 010 0 0 free
revolute 3 0 1 0 0 0 free

? revolute4 | 0 [ O | O 0 0 free
revolute 3 | 0 00 0 0 free

? revolute 4 | 1 0410 0 0 free
revolute3 | 0 00 0 0 free

* revolute 4 | 0 1 0 0 0 free

Even though thirty normal modes were obtained from the normal
mode analysis, if the simulation result s not improved with more
normal modes then a smaller number of normal modes can be used.
Fig. 6 shows the analysis results with 5 and 10 normal modes.

The result with two normal modes is very close to the result with
10 normal modes. But simulation time is increased if more modes
were used in the model. Thus, two normal modes and four static
modes were chosen to represent elastic deformation of the panel 2.
Proper mode set was decided for the other panels using the same
procedure.
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Fig. 8 X-directional reaction force on R1 joint

3.2 Analysis Results

The X-directional force on the R1 revolute joint is shown in Fig.
9. There is difference between rigid and flexible body dynamics of
joint reaction force about revolute joint connecting fixture to yoke
panel in Fig.3.
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All revolute joint were replaced by cylindrical joints to consider
motion due to the cable tension and gravity.

As shown in Fig. 9, flexible model has larger reaction force than
rigid model. It is very important to design hinge property.
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Fig. 9 X - directional reaction force on R1 joint
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Fig. 10 Yaw angle of the satellite main body

Fig. 10 compares the yaw angle of the main body with cable and
not. It is found that deployment motion is considerably different from
that with gravity-free state. It shows that the flexible model is
required to design an accurate control system rather than rigid model.

3.3 Test Results

It is necessary to check the performance of deployment test on the
ground without vertical acceleration, i.e., gravity-free state (zero g).
Fig. 11 shows the deployment test equipment with counter weight and
cable considering gravity-free state on the ground. This test
equipment was set to verify the reliability of dynamic analysis. Solar
panel was hanging from the ceiling by wire cable. We pick up the
response of hinge rotation using the accelerator on root. However, the
effect of gravity is not fully compensated to this test device during the
deployment test.

As shown in Fig. 10, the results of test and simulation are
different due to the cable for considering. It comes from the nonlinear
features such as balance of test equipment, damping, cable length and
its tension, friction and contact with test fixture. Tension effect of the
cable was considered in dynamic analysis model sufficiently, but the
effect of friction was not included in this model.

Fig. 12 shows the response of rotation hub angle via time with
respect to the cable length of 12 and 18 meters. It shows the different
motion with respect to the cable length. The longer cable makes the
slower response. It is found that the different motion is that with
gravity-free state

e

Fig. 11 Test equipment of solar array panel deployment with
hinge mechanism

Fixture Rotation Angle (deg)
w
o
W

—— Cable Length : 12 m
-~ Cable Length : 18 m

T . T T T T T T "r
10 12 14 16 18 20 22 24
Time (sec)

Fig. 12 Main body rotation angle with respect to cable length

4. Conclusions

In this study, an analysis of the system with elastic components
was presented. In particular, the method to select the proper set of
deformation modes and boundary condition for solving the redundant
problem was shown.

The reliability of the flexible body model was very important in
the design of strain energy hinges and control systems of the space
structure. Thus, a satellite system was modeled as the multibody
system with flexible bodies using the proposed method. This method
can be applied to any mechanical system where flexibility for the
component is important.
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Rotational spring damper actuator

Appendix 1: Dynamic Equations

The kinematics and driving constraints of the multibody dynamic

s e Fig. Al Satellite dynamic analysis model with spring, damper and
system can be written in the form

actuator (RSDA) type for solar panel

d(q,)=0 (A1) 100
T T T T
Where, ¢ = [‘]1 gy 50t qnb] w00 | Buckiing Torque Area
@ : Constraint equation { \
Then, the variation §q of the system generalized coordinates must 5 200 1
satisfy Eqn. (A2). 3 100 :[_—'\‘
= 0 7 . s et b el Y
j— [+4
@ g g =0 (A2) 3 b 7 4 5 6
- . . . -100
The yanatlon equations of the motion of the multibody system can be § Bending Stiffness Area
obtained by summing all bodies and constraints in the system and -200 F
writing the result in the compact form of Equ. (A3). 200 \
h I i)
& {M’G-Q"}=0 (A3) -400
Anglelrad)
Where " Fig. A2 Deployment toque in the strain energy hinge
T T T 3T
5q:[5‘11 ’&12 ,---,5q,,b] (A4)
Al.l.gmen.t.e;i St_?t: Varlalﬂe;ve;;tor Thin shell linear quadrilateral element
q=1q::q1 4] (A3) 0
Acceleration vector Unit inch 56
* . T
M =diag[M ,M,,-- M, ] (A6)
Augmented mass matrix E
* . . T MATS 263
Q" =diag[Q,,0,,+",0,,] (A7) E MATS 262
Augmented generalized force vector
Eqn. (A3) holds for all &g that satisfy Eqn. (A2) by Farkas lemma, Fig. A3 Shell element type for solar panel
there exist a Lagrange Multiplier Vector A such that
T * s T _ 01— Table A1 Mechanical property for shell element
&g {MG+® 1-0"}=0 (A8)
Mass property Value Unit
for arbitrary 5q , yielding the equation of motion Density 0.00179 b/in’
.. r . Poisson ratio, vy, 0.489
MG+®,A-0"=0 (A9) Mudulus, E,, 43366e+4 | Iblin®
Mudulus, E,, 1.6418e+4 Ib/in’
The constraint acceleration equation is obtained by taking two Shear modulus, Gy, 2.2248¢c+4 1b/in2
derivatives of Eqn. (A1) Shear modulus, G, 4.2et+4 1b/in?
. . . Shear modulus, G, 2.2et+4 1b/in®
®,4=-(0,9),9-20,9-D,=y (A10) Thickness(skin) 0.0039 in
Thickness(core) 0.59 in
Eqgn. (A9) and (A10) can be written in matrix form as
M® @] | *
7 _|¢ (A1)
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