DOI QR코드

DOI QR Code

Production of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Malassezia pachydermatis G-14

  • Jeong, Seung-Chan (Department of Genetic Engineering and Bio-medicinal Resource Research Center, Paichai University) ;
  • Kim, Jae-Ho (Department of Genetic Engineering and Bio-medicinal Resource Research Center, Paichai University) ;
  • Kim, Na-Mi (Central Research Institute, KT & G) ;
  • Lee, Jong-Soo (Department of Genetic Engineering and Bio-medicinal Resource Research Center, Paichai University)
  • Published : 2005.09.30

Abstract

To produce a novel antihypertensive angiotensin I-converting enzyme (ACE) inhibitor from yeast, a yeast isolate, designated G-14 showing the highest ACE inhibitory activity was obtained and identified as Malassezia pachydermatis based on morphological, biochemical and cultural characteristics. The maximal extracellular ACE inhibitor production was obtained from M. pachydermatis G-14 when the strain was cultured in YEPD medium containing 0.5% yeast extract, 3.0% peptone and 2.0% glucose at $30^{\circ}C$ for 24 h and the final ACE inhibitory activity was 48.9% under the above condition.

Keywords

References

  1. Ando, T., Okada, S., Uchida, I., Hemmi, K, Nishikawa, M., Tsurumi, Y, Fujie, A., Yoshida, K. and Okuhara, M. 1987. WF10129, a novel angiotensin converting enzyme inhibitor produced by a fungus, Doratomyces putredinis. J Antibiot. 40: 468-475 https://doi.org/10.7164/antibiotics.40.468
  2. Ando, T., Tsurumi, Y, Ohata, N., Uchida, I., Yoshida, K. and Okuhara, M. 1988. Vinigrol, a novel antihypertensive and platelet aggregation inhibitory agent produced by a fungus, Virgaria nigra. Taxonomy, fermentation, isolation, physico-chemical and biological properties. J Antibiot. 41: 25-30 https://doi.org/10.7164/antibiotics.41.25
  3. Ariyosh, Y 1993. Angiotensin converting enzyme inhibitors derived from food protein. Trend in Food Sci. Technol. 4: 139-144 https://doi.org/10.1016/0924-2244(93)90033-7
  4. Choi, H. S., Cho, H. Y, Yang, H. C., Ra, K. S. and Suh, H. J. 2001. Angiotensin I-converting enzyme inhibitor from Grifola frondosa. Food Res. Inter. 34: 177-182 https://doi.org/10.1016/S0963-9969(00)00149-6
  5. Demain, A. L., Somkuti, G. A., Hunter-Cevera, J. C. and Rossmoore, H. W. 1989. Novel microbial products for medicine and agriculture. Elsevier Science Pubishers
  6. Elisseeva, Y E., Orekhovich, V. N., Pavlikhina, L. N. and Alexeenko, L. P. 1971. Carboxycathepsin- A key regulatory component of two physiological systems involved in regulation of blood pressure. Clin. Chim. Acta. 31: 413-419 https://doi.org/10.1016/0009-8981(71)90412-8
  7. Ferreira, S. H., Bartelt, D. C. and Greene, L. J. 1970. Isolation of bradykinin-potentiating peptides from Bothrops jararaca venom. Biochemistry 9: 2583-2592 https://doi.org/10.1021/bi00815a005
  8. Folkow, B., Johansson, B. and Mellander, S. 1961. The comparative effects of angiotensin and noradrenaline on consecutive vascular sections. Acta. Physiol. Scand. 53: 99-104 https://doi.org/10.1111/j.1748-1716.1961.tb02267.x
  9. Fujita, H., Yokoyama, K. and Yoshikawa, M. 2000. Classification and antihypertensive activity of angiotensin I-converting enzyme .inhibitory peptides derived from food proteins. J Food. Sci. 65: 564-569 https://doi.org/10.1111/j.1365-2621.2000.tb16049.x
  10. Gohlke, P., Linz, W., Schokens, B. A., Kuwer, I., Bartenbach, S., Schell, A. and Unger, T. 1994. Angiotensin converting enzyme inhibition improves cardiac function. Hypertension 23: 411-418 https://doi.org/10.1161/01.HYP.23.4.411
  11. Hasegawa, T. 1984. Taxonomy and identification of Microorganism. Hakhoey Pub. Center, Tokyo
  12. Kido, Y., Hamakado, T., Yoshida, T., Anno, M., Motoki, Y., Wakamiya, T. and Shiba, T. 1983. Isolation and characterization of ancovenin, a new inhibitor of angiotensin I converting enzyme produced by Actinomycetes. J Antibiot. 36: 1295-1299 https://doi.org/10.7164/antibiotics.36.1295
  13. Kim, J. H. 2003. Biotechnological characterization of a novel antihypertensive angiotensin I-converting enzyme inhibitor from yeast and its industrial application. Ph.D. dissertation. Paichai Univ. Graduate school
  14. Kim, J. H., Lee, D. H., Choi, S. Y. and Lee, J. S. 2002. Characterization of physiological functionalities in Korean traditional liquors. Kor. J Food Sci. Technol. 34: 118-122
  15. Kohama, Y., Nagase, Y., Oka, H., Nakagama, T., Teramoto, T., Murayama, N., Tsujibo, H., Inamori, Y. and Mimura, T. 1990. Production of angiotensin-converting enzyme inhibitors from baker's yeast glyceraldehyde-3-phosphare dehydrogenase. J Pharmacobio-Dyn. 13: 766-771 https://doi.org/10.1248/bpb1978.13.766
  16. Kreger-van, F. 1984. The yeast, a taxonomic study, 3rd ed. Elsevier Sci, Amsterdam
  17. Lee, D. H., Kim, J. H., Cheong, J. C., Gong, W. S., Yoo, Y. B., Park, J. S., Yoo, C. H. and Lee, J. S. 2003. Screening of mushrooms having angiotensin I-converting enzyme inhibitor. Kor. J Mycol. 31: 148-154 https://doi.org/10.4489/KJM.2003.31.3.148
  18. Lee, J. S., Yi, S. H., Kwon, S. J., Ahn, C. and Yoo, J. Y. 1997. Isolation, identification and cultural condition of yeasts from traditional meju. Kor. J Appl. Micro. Biotech. 25: 435-441
  19. Maruyama, S., Miyoshi, S. and Tanaka, H. 1989. Angiotensin I converting enzyme inhibitor derived from Ficus carica. Agric. Biol. Chem. 53: 2763-2769 https://doi.org/10.1271/bbb1961.53.2763
  20. Matsumura, N., Fujii, M., Takeda, Y., Sugita, K. and Shimizu, T. 1993. Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate. Biosci. Biotech. Biochem. 57: 695-697 https://doi.org/10.1271/bbb.57.695
  21. Miyoshi, S., Ishikawa, H., Kaneko, T., Fukui, F. and Tanaka, H. 1991. Structures and activity of angiotensin-converting enzyme inhibitors in an $\alpha$-Zein hydrolysate. Agric. Biol. Chem. 55: 1313-1318 https://doi.org/10.1271/bbb1961.55.1313
  22. Morigiwa, A., Kitabatake, A., Fujimoto, Y. and lkekawa, N. 1986. Angiotensin converting enzyme-inhibitory triterpenes from G lucidum. Chem. Pharm. Bull. 34: 3025-3028 https://doi.org/10.1248/cpb.34.3025
  23. Ondetti, M. A., Rubin, R and Cushman, D. W. 1977. Design of specific inhibitors of angiotensin converting enzyme: New class of orally active antihypertensive agents. Science 196: 441-444 https://doi.org/10.1126/science.191908
  24. Ondetti, M. A., Rubin, R and Cushman, D. W. 1982. Enzyme of the rennin-angiotensin system and their inhibitors. Ann. Rev. Biochem. 51: 283-308 https://doi.org/10.1146/annurev.bi.51.070182.001435
  25. Oshima, G., Shimabukuro, H. and Nagasawa, K. 1979. Peptide inhibitors of angiotensin I-converting enzyme in digestsof gelatin by bacterial collagenase. Biochem Biophys. Acta 566: 128-137 https://doi.org/10.1016/0005-2744(79)90255-9
  26. Pal, L. V., Janet, S. R., Laura, E. L., Ralph, E. S. and Patrick, E. W. 1995. Angiotensin and bradykinin metabolism by peptidases identified in cultured human skeletal muscle myocytes and fibroblasts. Peptides 16: 1367-1373 https://doi.org/10.1016/0196-9781(95)02034-9
  27. Pollare, T., Lithell, H. and Berne, C. 1989. A comparison of the effects of hydrochorothiazide and captopril 011 glucose and lipid metabolism in patients with hypertension. N Engl. J Med. 321: 868-873 https://doi.org/10.1056/NEJM198909283211305
  28. Rencland, R. and Lithell, H. 1994. Angiotensin converting enzyme in human skeletal muscle. A simple in vitro assay of activity in needle biopsy specimens. Scand. J Clin. Lab. Invest. 54: 105-111 https://doi.org/10.3109/00365519409086516
  29. Rhyu, M. R., Nam, Y. J. and Lee, H. Y. 1996. Screening of angiotensin converting enzyme inhibitors in cereals and legumes. Foods and Biotechnol. 5: 334-337
  30. Saito, Y., Wanezaki, K., Kawato, A. and Imayasu, S. 1994. Structure and activity of angiotensin I converting enzyme inhibitory peptides from sake and sake lees. Biosci. Biotech. Biochem. 58: 1767-1771 https://doi.org/10.1271/bbb.58.1767
  31. Sugiyama, K., Takada, K., Egawa, M., Yamamoto, I., Onzuka, H. and Oba, K. 1991. Hypertensive effect of fish protein hydrolysate. Nippon Nogeikagaku Kaishi. 65: 35-41 https://doi.org/10.1271/nogeikagaku1924.65.35
  32. Sun, H. J., Cho, S. J., Whang, J. H., Lee, H. and Yang, H. C. 1997. Characterization of angiotensin converting enzyme inhibitor from squid hydrolysate. Foods and Biotechnol. 6: 122-128
  33. Tomiyama, H., Kushiro, T. and Abeta, H. 1994. Kinins contribute to the improvement of insulin sensitivity during treatment with angiotensin converting enzyme inhibitor. Hypertension 23: 450-455 https://doi.org/10.1161/01.HYP.23.4.450
  34. Ukeda, H., Matsuda, H., Kuroda, H., Osajima, K., Matsufuji, H. and Osajima, Y. 1991. Preparation and separation of angiotensin I converting enzyme inhibitory peptides. Nippon Nogekagaku Kaishi 65: 1223-1228 https://doi.org/10.1271/nogeikagaku1924.65.1223

Cited by

  1. vol.39, pp.2, 2011, https://doi.org/10.4489/MYCO.2011.39.2.137
  2. Production of Tyrosinase Inhibitor from Saccharomyces cerevisiae vol.40, pp.1, 2012, https://doi.org/10.4489/KJM.2012.40.1.060
  3. sp. from Wild Flowers in Korea vol.40, pp.4, 2012, https://doi.org/10.5941/MYCO.2012.40.4.255
  4. Isolation and Identification of Yeasts from Wild Flowers in Deogyu Mountain and their Physiological Functionalities vol.43, pp.1, 2015, https://doi.org/10.4489/KJM.2015.43.1.47
  5. Isolation and Diversity of Wild Yeasts from Some Cereals vol.43, pp.1, 2015, https://doi.org/10.4489/KJM.2015.43.1.64
  6. Antioxidant Activity and Inhibitory Activities of Xanthine Oxidase and Tyrosinase of Yeasts from Wild Flowers in Korea vol.43, pp.2, 2015, https://doi.org/10.4489/KJM.2015.43.2.99
  7. Yeasts Diversity of Wild Flowers in Mountains of Korea and Their Physiological Functionalities vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.137