DOI QR코드

DOI QR Code

공침법으로 제조한 Ni-Cu-Zn Ferrite의 Ni 첨가량과 온도에 따른 주파수 및 물리적 특성 연구

A Study on Frequency and the Physical Properties of Ni-Cu-Zn Ferrites with the Variation of Ni Addition and Temperature Prepared by Co-Precipitation Method

  • 김문석 (숭실대학교 자연대학 물리학과) ;
  • 고재귀 (숭실대학교 자연대학 물리학과)
  • 발행 : 2005.10.01

초록

공침법으로 제조한 Ni-Cu-Zn ferrite를 사용하여 전파흡수체로 사용할 저온소결용 ferrite를 연구하였다. Ni 첨가량에 따른 조성비 및 가소온도와 소결온도 변화를 시켜 전파흡수특성 및 물리적 특성을 고찰하였다. XRD pattern을 통하여 spinel구조를 가짐을 확인하였고, 공침법으로 제조된 Ni-Cu-Zn ferrite 미분말이 나노입자 크기를 보였다 소결온도가 $1100^{\circ}C$이고 Ni 함량이 많을 수록 투자율이 낮고 손실계수도 높게 측정되어 흡수 능력도 좋아짐을 알 수 있고, MHz 영역에서 사용할 수 있다고 사료된다. 그리고 소결온도 $1100^{\circ}C$이고 $(Ni_{0.7}Cu_{0.2}Zn_{0.1}O)_{1.02}(Fe_{2}O_3)_{0.98}$ 조성일 때가 가장 손실이 크므로 전파흡수체로 사용할 조성임을 확인 할 수 있었다.

Ni-Cu-Zn ferrites were prepared by the co-precipitation and ferrite microwave absorbers on low temperature sintering were investigated in this work. The properties of its microwave absorbing and physical were analyzed into variations of Ni addition, calcination temperature, sintering temperature. From the analysis of X-ray diffraction patterns, we can see that all the particles have only a single phase spinel structure. In addition, the powders particle size distribution obtained the nano size. By increasing the Ni additive, the permeability of the powders was decreased and the loss factor increased at sintering temperature $1100^{\circ}C$. Also, we considered that it can used high frequency rage. We found that the $(Ni_{0.7}Cu_{0.2}Zn_{0.1}O)_{1.02}(Fe_{2}O_3)_{0.98}$ appeared microwave absorbing properties better than other composition.

키워드

참고문헌

  1. K. Ishino, et al., IEEE Trans. Instrum. Meas., lM-19, 377(1970)
  2. S.S. Kim, D.H. Han, and S.B. Jo, IEEE Trans. Mag., 35(6), 4554(1994)
  3. Y.J. Lee, Y.C. Yoon, and S.S. Kim, Kor. J. of Mater. Research, 12(2), 160(2002) https://doi.org/10.3740/MRSK.2002.12.2.160
  4. G.T. Rado, R.W. Wright, and W.H. Emerson, Phys. Rev., 80(2), 273(1950) https://doi.org/10.1103/PhysRev.80.273
  5. S.S. Kim, J. of Kor. Mag. Soc., 4(3), 285(1994)
  6. J.G. Koh and J.M. Song, Basic and Application of Magnetic physics, Soongsil Univ. press, Seoul, pp. 161-198(2005)
  7. Y. Naito and K. Suetake, IEEE Trans. Micro. Theory and Tech., MTT19(1), 65(1971)
  8. Y. Naito, J. Phys. IV, 7, C1-405(1997) https://doi.org/10.1051/jp4:19971164
  9. S. Sugimoto, K. Okayama, S. Kondo, H. Ota, M. Kimura, Y Yoshida, H. Nakamura, D. Book, T. Kagotani, and M. Homma, Mater. Trans., JIM, 39( I 0), 1080(1998) https://doi.org/10.2320/matertrans1989.39.1080
  10. S.B. Cho and J.H. Oh, J. of Kor. Mag. Soc., 6(2), 115(1993)
  11. S.K. Ko, B.H. Kim, and K.Y. Kim, J. of Kor. Ceramic Soc., 34(10),1074(1997)
  12. J.S. Kim and J.G. Koh, J. of Kor. Mag. Soc., 13(1), 15(2003) https://doi.org/10.4283/JKMS.2003.13.1.015
  13. E.K. Hur and J.S. Kim, J. of Kor. Cer. Soc., 40(1), 31(2003) https://doi.org/10.4191/KCERS.2003.40.1.031
  14. B.D. Cullity and S.R. Stock, Elements of X-ray Diffraction, Prentice Hall, New Jersey, pp. 167-183(2001)
  15. Cullity, 'Introduction to magnetic materials', Addison Wesley Publishing, London, pp. 185, pp. 385(1972)