Two-Tone 입력을 이용한 RF 전력증폭기 메모리 특성의 신경망 모델링

Neural Network Modeling of Memory Effects in RF Power Amplifier Using Two-tone Input Signals

  • 황보훈 (성균관대학교 정보통신공학부) ;
  • 김원호 (성균관대학교 정보통신공학부) ;
  • 나완수 (성균관대학교 정보통신공학부) ;
  • 김병성 (성균관대학교 정보통신공학부) ;
  • 박천석 (성균관대학교 정보통신공학부) ;
  • 양영구 (성균관대학교 정보통신공학부)
  • Hwangbo Hoon (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim Won-Ho (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Nah Wansoo (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Kim Byung-Sung (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Park Cheonsuk (School of Information and Communication Engineering, Sungkyunkwan University) ;
  • Yang Youngoo (School of Information and Communication Engineering, Sungkyunkwan University)
  • 발행 : 2005.10.01

초록

본 논문에서는 투톤(two-tone) 신호가 입력된 RF 전력 증폭기의 출력단에서 관찰되는 메모리 효과를 신경망회로를 이용하여 모델링 하였다. 입력 신호의 톤 간격과 전력 레벨의 변화에 따른 출력 전력의 IMD(Inter-Modulation Distortion) 비대칭성을 측정하여 고출력 RF 전력 증폭기의 메모리 효과를 확인하였으며, 서로 다른 중심 주파수에서의 메모리 효과도 실험적으로 확인하였다. 투톤 입력 신호 테스트에 기초한 전력 증폭기의 모델링 방법으로 TDNN(Tapped Delay Line-Neural Network)방식을 적용하였으며 이 방식이 다른 여러 가지 모델링 방법과 비교하여 매우 신뢰할만한 정확성을 가짐을 보였다.

In this paper, we used neural network technique to model memory effects of RF power amplifier which is fed by two-tone input signals. The memory effects in power amplifier were identified by observing the unsymmetrical distribution of IMD(Inter-Modulation Distortion) measurements with the change of tone spacings and power levels. Different asymmetries of IMD were also found at different center frequencies. We applied TDNN technique to model LDMOS power amplifier based on two tone IMD data, and the accuracy was very high compared to other modeling methods such as the(memoryless) adaptive modeling method.

키워드

참고문헌

  1. Steve C. Cripps, Advanced Techniques in RF Power Amplifier Design, Artech House, 2002
  2. Peter B. Kenington, High-Linearity RF Amplifier Design, Artech House, 2000
  3. Michel C. Jeruchim et aI., Simulation of Communication Systems: Modeling, Methodology, and Techniques, 2nd Edition, Kluwer, 2000
  4. S. M. McBeath et aI., 'W-CDMA power amplifier modeling', IEEE Vehicle Technology Conference, vol. 4, pp. 2243-2247, 2001 https://doi.org/10.1109/VTC.2001.957144
  5. Stephen A, Maas, Nonlinear Microwave and RF Circuits, Artech House, 2003
  6. Joel Vuolevi, Timo Rahkonen, Distortion in RF Power Amplifiers, Artech House, 2003
  7. Piet Wambacq, Willy Sansen, Distortion Analysis of Analog Integrated Circuit, Kluwer, 1998
  8. Jose Carlos Pedro, Nuno Borges Carvalho, Intermodulation Distortion in Microwave and Wireless Circuits, Artech House, 2003
  9. Richard G. Lyons, Understanding Digital Signal Processing, Addison-Wesley, 1997
  10. Samuel D. Stearns, Digital Signal Processing with Examples in MATLAB, CRC Press, 2003
  11. http://www.intersil.com
  12. http://www.pmc-sierra.com
  13. V. John Mathews, Giovanni L. Sicuranza, Polynomial Signal Processing, John Wiley & Sons, Inc., 2000
  14. J. Kim, K. Konstantinou, 'Digital predistortion of wide band signals based on power amplifier model with memory', Electron. Lett., vol. 37, no. 23, pp. 1417-1418, Nov. 2000
  15. Michael S. Heutmaker et aI., 'Envelope distortion models with memory improve the prediction of spectral regrowth for some RF amplifiers', Applied Microwave and Wireless, pp. 72-78, Jul.-Aug. 1997
  16. Michael S. Heutmaker et aI., 'Using digital modulation to measure and model RF amplifier distortion', Applied Microwave and Wireless, pp. 36-39, Mar.-Apr. 1997
  17. Kathleen J. Muhonen, Mohsen Kavehrad, 'Amplifier linearization with memory for broadband wireless applications', Asilomar Conference on Signals, Systems and Circuits, vol. 1, pp. 689-693, 2001
  18. Muhammad A. Nizamuddin, 'Nonlinear tapped delay line digital predistorter for power amplifier with memory', Wireless Communications and Networking, pp. 607-611, Mar. 2003
  19. C. J. Clark et aI., 'Time-domain envelope measurement technique with application to wideband power amplifier modeling', IEEE Trans. Microwave Theory Tech., vol. 46, no. 12, pp. 2531-2540, Dec. 1998 https://doi.org/10.1109/22.739245
  20. H. Ku et aI., 'Extraction of accurate behavior models for power amplifiers with memory effect using two-tone measurements', IEEE MTT-S Int. Microwave Sym. Dig., pp. 139-142, Jun. 2002 https://doi.org/10.1109/MWSYM.2002.1011578
  21. H. Ku, J. S Kenny, 'Behavioral modeling of nonlinear RF power amplifiers considering memory effects', IEEE Trans. Microwave Theory Tech., vol. 51, no. 12, pp. 2495-2504, Dec. 2003 https://doi.org/10.1109/TMTT.2003.820155
  22. Simon Haykin, Neural Networks, 2nd Edition, Prentice Hall, 1999
  23. Taij Liu et aI., 'Dynamic behavioral modeling of 3 G power amplifiers using real-valued time-delay neural networks', IEEE Trans. Microwave Theory Tech., vol. 52, no. 3, pp. 1025-1033, Mar. 2004 https://doi.org/10.1109/TMTT.2004.823583
  24. Martin T. Hagan et aI., Neural Network Design, PWS Publishing Co., 1995
  25. Y. Yang, J. Ji, J. Nam, B. Kim, and M. Park, 'Measurement of the two tone transfer characteristics of high power amplifier', IEEE Trans. Microwave Theory Tech., vol. 49, no. 3, pp. 568-571, Mar. 2001 https://doi.org/10.1109/22.910567