DOI QR코드

DOI QR Code

Functional Activities of Low Molecular Weight Peptides Purified from Enzymatic Hydrolysates of Seaweeds

해조류 효소가수분해물질로부터 정제한 저분자 Peptide의 기능성

  • Lee, Jung-Min (Faculty of Marine Bioscience & Technology, Kangnung National University) ;
  • You, Sang-Guan (Dept. of Food Scinece, University of Manitoba) ;
  • Kim, Sang-Moo (Faculty of Marine Bioscinece & Technology, Kangnung National University)
  • 이정민 (강릉대학교 해양생명공학부) ;
  • 유상권 (Manitoba대학교 식품과학과) ;
  • 김상무 (강릉대학교 해양생명공학부)
  • Published : 2005.10.01

Abstract

Functional activities of low molecular weight substances purified from pepsin hydrolysates of four different seaweeds; Costaria costata, Enteromorpha prolifera, Grateloupia filicina and Porphyra tenera, were inves-tigated. Each pepsin hydrolysate of Costaria costata, Enteromorpha prolifera, and Grateloupia filicina resulted in three peptide peaks on Bio-Rad P2 gel chromatography pattern, while that of Porphyra tenera showed 2 peaks. Peak 1 of Porphyra tenera showed the highest antioxidative activity followed by peak 2 of Porphyra tenera and peak 2 of Costaria costata in order Peak 1 of Porphyra tenera showed the highest ACE inhibitory activity followed by peak 3 and peak 2 of Enteromorpha prolifera in order. Peak 1 and peak 2 of Porphyra tenera, and peak 2 of Enteromorpha prolifera showed the highest antityrosinase activity followed by peak 3 of Enteromorpha prolifera. Peak 1 of Enteromorpha prolifera showed the highest antitumor activity followed by peak 2 of Costaria costata, peak 3 of Enteromorpha prolifera, and peak 3 of Grateloupia filicina in order. Porphyra tenera showed the highest functional activities, which is thought to be due to its high protein content. Structure and amino acid sequence of low molecular weight peptide of Porphyra tenera should be analyzed in the further study.

동해안 특산 해조류의 식품 또는 의약품재료로의 이용가능성을 검토하기 위하여 소화효소(pepsin)로 가수분해한 다음 저분자peptide를 정제하여 여러 가지 기능성을 연구하였다. 쇠 미역, 파래 및 지누아리의 효소가수분해물은 Bio-Rad P2 gel chromatography 상에서 3개의 peptide peak를 나타내었으나 김은 2개의 peak를 나타내었다. 항산화활성은 김 peak 1이 가장 높았으며 그 다음으로 김 peak 2 및 쇠미역 peak 2 순으로 높았다. ACE 저해활성은 김 peak 1, 파래 peak 3 및 peak 2순으로 높았으며, 항갈변활성은 김 peak 1 및 2, 파래 peak 2가 가장 높았으며 그 다음으로 파래 peak 3이 높았다. 항암(종양)활성은 파래 Peak 1이 가장 높았으며 그 다음으로 쇠미역 peak 2, 파래 peak 3, 지누아리 peak 3 순으로 높았다. 전반적으로는 김의 기능성이 가장 뛰어났으며, 이는 가장 높은 단백질함량을 가지고 있는 것도 한 이유라고 판단되며, 앞으로 저분자 peptide의 구조분석 및 아미노산 sequence의 규명도 필요하다고 본다.

Keywords

References

  1. Lee YS, Park YH, O JH, Kim TJ, Lee HS. 1997. Effect of protein hydrolysate on blood and liver lipids in rats fed fat-enriched diet. Korean J Nutr 30: 614-622
  2. Aoyama Y, Ohmura E, Kato T, Yosida A. 1995. Effect dietary lysine and arginine addition on growth, performance and serum cholesterol level in chickens. Animal Sci Tech 66: 412-421
  3. Liu A, Takeichi K, Miyuki S. 1994. Effect of dietary peptides on the plasma lipids and mechanism studies in rats and mice. Nutr Res 14: 1661-1669 https://doi.org/10.1016/S0271-5317(05)80321-5
  4. Kimikazu I, Kiyoshi S, Fumio I. 1986. Involvement of postdigestion hydrophobic peptide in plasma cholesterol lowering effects of dietary plant proteins. Agric Biol Chem 50: 1217-1222 https://doi.org/10.1271/bbb1961.50.1217
  5. Cho DM, Kim DS, Lee DS, Kim HP, Pyeun JH. 1995. Trace components and functional saccharides in scaweed-1. J Korean Fish Soc 28: 45-59
  6. Cho DM, Kim DS, Lee DS, Kim HP, Pyeun JH. 1995. Trace components and functional saccharides in seaweed-2. J Korean Fish Soc 28: 270-278
  7. Jung JY, Hur SS, Choi YH. 1999. Studies on the efficient extraction process of alginic acid in sea tangle. Food Engineering Process 3: 90-97
  8. Ebihara K, Kiritama S. 1990. Physiochemical property and physiological function of dietary fiber. Nippon Shokuhin Kogyo Gakkaishi 37: 916-925 https://doi.org/10.3136/nskkk1962.37.11_916
  9. Kim KS, Kim GJ. 1998. Effects of the feeding Hijikia fusiforme (Harvey) Okamura on lipid composition of serum in dietary hyperlipidemic rats. J Korean Soc Food Sci Nutr 27: 718-723
  10. Kim DS, Park YH. 1985. Uronic acid composition, block structure and some related properties of alginic acid. J Korean Fish Soc 18: 29-36
  11. Colliec S, Fischer AM, Tapon BJ, Boisson C, Durand P, Jozefonvicz J. 1991. Anticoagulant properties of a fucoidan fraction. Thromb Res 64: 143-154 https://doi.org/10.1016/0049-3848(91)90114-C
  12. Lee YS, Kim DS, Rhy BH, Lee SH. 1992. Antitumor and immunomodulating effects of seaweeds toward sarcoma180 cell. J Korean Soc Food Nutr 21: 544-550
  13. Cho KJ, Lee YS, Ryu BH. 1990. Antitumor effect and immunology activity of seaweeds toward sarcoma-180 cell. J Korean Fish Soc 23: 345-352
  14. Chiharu N, Tadashi N, Toshirnara Y. 1992. Effect of pH on the in vitro absorption of mutagens to dietary fiber. Biosci Biotech Biochem 56: 1100-1105 https://doi.org/10.1271/bbb.56.1100
  15. Do JR. 1997. Extraction and purification of agar from a Gelidium amansii. J Korean Fish Soc 30: 423-427
  16. Pintauro SJ, Gilbert SW. 1990. The effects of carrageenan on drug-rnetabolozing enzyme system activities in the guinea pig. Food Chem Toxicol 28: 807-811 https://doi.org/10.1016/0278-6915(90)90053-P
  17. Park JH, Koo JG, Do JR, Yang CB, Woo SK. 1998. Effect of extraction temperature and pH on the chemical properties of crude porphyra extracted from Porphyra yezoensis. J Korean Fish Soc 31: 127-131
  18. Schwart HJ, Kellermeyer RW. 1969. Carrageenan and delayed hypertensivity II. avtivation of hageman factor by carrageenan and its possible siginificance. Proc Soc Exp Biol Med 132: 1021-1024 https://doi.org/10.3181/00379727-132-34358
  19. AOAC. 2000. Official Methods of Analysis. 17th ed. Association of official analytical chemists, Washington, DC, USA
  20. Kunio S, Takahisa N.2000. Identification of an antihypertensive peptide from peptic digest of wakame (Undaria pinnafifida). J Nutr Biochem 11: 450-454 https://doi.org/10.1016/S0955-2863(00)00110-8
  21. Umemoto S. 1966. A modification method for estimation of muscle protein by Biuret method. Bull Japanese Soc Sci Fish 32: 427-435 https://doi.org/10.2331/suisan.32.427
  22. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 26: 1119-1200
  23. Cushman DW, Cheung HS. 1971. Spectrophotometric assay and properties of the angiotensin converting enzyme of rabbit lung. Biochem Pharmacol 20: 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  24. Horowitz J, Saukkonen JJ, Chargaff E. 1960. Effects of fluoropirimidines on the synthesis of bacterial proteins and nucleic acids. J Biol Chem 235: 3266-3272
  25. Charmichael J, Degraff EG, Gazdaar AF, Minna JD, Michell JB. 1987. Evaluation of a tetrazolium based serniauromated colorimetric assay, assessment of chemosensitivity testing. Cancer Res 47: 936-943
  26. Yeum DM, Lee TG, Park YH, Kim SB. 1997. Antioxidative activity on enzymatic hydrolysates derived from anchovy muscle protein. J Korean Fish Sci 30: 842-849
  27. Krogull MK, Fennema O. 1981. Oxidation of tryptophan in the presence of oxidizing methyllinoleate. J Agric Food Chem 35: 66-70 https://doi.org/10.1021/jf00073a016
  28. Yeum DM, Lee TG, Byum HS, Kim SB, Park TH. 1992. Angiotensin-I converting enzyme inhibitory activity of enzymatic hydrolysates of mackerel muscle protein. J Korean Fish Soc 25: 229-235
  29. Lee HO, Yoon HD, Jang YS, Suh SB, Ko YS. 1999. Angietensirr-I converting enzyme inhibitory activity of algae. J Korean Fish Soc 32: 738-746
  30. Chen JS, Wei SC, Marshall MR. 1991. Inhibition mechanism of kojic acid on polyphenol oxidase. J Agric Food Chem 39: 1897-1901 https://doi.org/10.1021/jf00011a001
  31. Yang MJ, Kim MG, Ann HS, Ahn RM. 1999. Inhibitory effects of water-acetone extracts of chestnut inner shell, pine needle and hop on the melanin biosynthesis. Yakhak Hoeji 43: 269-275
  32. Yun KA, Park YJ, Bae SJ. 2004. Antioxidant and tyrosinase inhibitory effects of Brassica oleracea L. fractions. J Korean Soc Food Sci Nutr 33: 7-15 https://doi.org/10.3746/jkfn.2004.33.1.007
  33. Kim SA, Kim J, Woo MK, Kwak CS, Lee MS. 2005. Antimutagenic and cytotoxic effects of ethanol extracts from five kinds of seaweeds. J Korean Soc Food Sci Nutr 34: 451 -459 https://doi.org/10.3746/jkfn.2005.34.4.451
  34. Krinskey NI. 1993. Micronutrients and their influence on mutagenicity and malignant transformation. Ann New York Acad Sci 686: 229-234 https://doi.org/10.1111/j.1749-6632.1993.tb39180.x

Cited by

  1. In vitro assessment of the cardioprotective, anti-diabetic and antioxidant potential of Palmaria palmata protein hydrolysates vol.25, pp.6, 2013, https://doi.org/10.1007/s10811-013-0017-4
  2. The effect of time and origin of harvest on the in vitro biological activity of Palmaria palmata protein hydrolysates vol.62, 2014, https://doi.org/10.1016/j.foodres.2014.04.035
  3. BIOACTIVE PROTEINS, PEPTIDES, AND AMINO ACIDS FROM MACROALGAE1 vol.47, pp.2, 2011, https://doi.org/10.1111/j.1529-8817.2011.00969.x
  4. Production and Characterization of β-Glucan Type Oligomer Produced with Enzymatic Hydrolysis of Capsosiphon fulvescens vol.28, pp.3, 2013, https://doi.org/10.7841/ksbbj.2013.28.3.151
  5. Antioxidant Activities and Acetylcholinesterase Inhibitory Activities from Seaweed Extracts vol.41, pp.4, 2012, https://doi.org/10.3746/jkfn.2012.41.4.443
  6. Marine Bioactive Compounds and Their Health Benefits: A Review vol.14, pp.4, 2015, https://doi.org/10.1111/1541-4337.12136
  7. Angiotensin-Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Crassostrea gigas (Oyster) vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.220
  8. Analysis of Angiotensin I Converting Enzyme Inhibitory Activity of Oligosacchride Extracted from Capsosiphon fulvescens vol.28, pp.2, 2013, https://doi.org/10.7841/ksbbj.2013.28.2.131
  9. 해양생물로부터 기능성 펩티드의 생산 및 응용 vol.51, pp.4, 2018, https://doi.org/10.23093/fsi.2018.51.4.278
  10. Antialgal Activity of Glycoglycerolipids Derived from a Green Macroalgae Ulva prolifera on Six Species of Red Tide Microalgae vol.484, pp.None, 2019, https://doi.org/10.1088/1757-899x/484/1/012057