DOI QR코드

DOI QR Code

Supplementary Effects of Lentinus edodes with Different Harvest Period and Part on Neurotransmitters and Lipid Peroxide Levels in the Brain of Diabetic Mice

채취 시기 및 부위가 다른 표고버섯의 급여가 당뇨 마우스 뇌조직의 신경전달물질 및 지질과산화물 수준에 미치는 영향

  • Park, Hong-Ju (National Rural Resources Development Institute, NIAST) ;
  • Kim, Dae-Ik (National Rural Resources Development Institute, NIAST) ;
  • Lee, Sung-Hyon (National Rural Resources Development Institute, NIAST) ;
  • Lee, Young-Min (National Rural Resources Development Institute, NIAST) ;
  • Jeong, Hyun-Jin (National Rural Resources Development Institute, NIAST) ;
  • Cho, Soo-Muk (National Rural Resources Development Institute, NIAST) ;
  • Chun, Jye-Kyung (National Rural Resources Development Institute, NIAST) ;
  • S. Lillehoj, Hyun (Animal and Natural Resources lnstitute ARS-USDA)
  • 박홍주 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 김대익 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 이성현 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 이영민 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 정현진 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 조수묵 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • 전혜경 (농촌진흥청 농업과학기술원 농촌자원개발연구소) ;
  • Published : 2005.10.01

Abstract

This study was designed to investigate the supplementary effects of Lentinus edodes which were harvested at different time period and part on acetylcholine content and its related enzyme activities in the brain of diabetic mouse model (KK mouse). We fed mice with standard diet (Control diet; CON) or 4 different kinds of experimental diets (DGC: on time harvested, cap of Dong Go; DGS: on time harvested, stipe of Dong Go; HSC: late harvested, cap of Hyang Sin: HSS: late harvested, stipe of Hyang Sin) to KK mouse for 8 weeks. Neurotransmitter such as acetylcholine contents, acetylcholinesterase activities, monoamine oxidase-B ac-tivities and lipid peroxide contents in the brain were measured. The results showed that acetylcholine content was significantly higher in DGC and HSC groups than CON group. The activities of acetylcholinesterase and monoamine oxidase-B enzyme were significantly inhibited in the brain of DGC and HSC groups compared with CON group. Lipid peroxide content was lower in DGC group than CON group. These results suggested that the cap of Lentinus edodes which were harvested on time and late time contain increased acetylcholine content and decreased acetylcholinesterase activities, monoamine oxidase-B activities and lipid peroxide contents. Thus the cap of Lentinus edodes which were harvested at different time periods may play an effective role in enhancing cognitive function.

국민생활 수준의 향상과 의학기술의 발달로 인하여 평균수명이 증가하였지만 이에 반해 성인병, 암, 치매 등 질병 유병율은 점차적으로 증가하는 실정이다. 특히 당뇨와 치매는 고령화 현상에 따른 노인 인구의 증가에 따라 그 심각성이 더욱 크다. 또한 문경에서는 품질이 낮은 향신 표고버섯의 대 부위를 분말화하여 조미료로 이용함으로써 표고버섯의 활용 및 부가가치를 높이고 있으나, 표고버섯의 채취시기 및 부위별 생리활성에 대한 연구는 미흡한 실정이다. 이에 따라 본 연구에서는 KK 당뇨마우스를 이용하여 대조군과 표고버섯 품질 (동고, 향신) 및 부위별(갓, 대) 분말을 섭취한 4종의 실험군을 8주간 사육한 다음 치매관련 뇌조직 신경전달 물질(neurotransmitter) 및 그 관련효소를 조사하고 활성 산소에 의한 산화적 스트레스로 지질과산화(lipid peroxide)를 평가하였다. 그 결과 뇌의 가장 중요한 신경전달물질인 아세틸콜린 함량은 표고버섯 향신갓 부분을 섭취한 실험군 HSC에서 약 12$\%$의 유의적인 증가효과를 보였으며, 아세틸콜린 분해효소인 AChE효소의 저해활성은 동고갓 부분을 섭취한 DGC실험군에서 약 10$\%$의 유의적인 아세틸콜린에 스테라아제 활성 저해효과를 보였으며, 향신갓 부분를 섭취한 HSC 실험군에서도 저해되는 경향을 보였다. 카테콜아민계 신경전달물질의 파괴에 관계하는 MAO-B효소의 저해활성은 향신갓 부위 첨가 식이 HSC에서 약 12$\%$의 유의적인 활성 저해효과를 보였으며, 지질과산화는 동고갓 부위를 섭취한 실험군 DGC에서 약 10$\%$의 유의적인 지질과산화 감소 효과를 보였다. 따라서 표고버섯은 대 부분보다는 갓 부분이 채취시기 및 품질에 상관없이 당뇨모델 마우스 뇌조직의 AChE 효소의 활성을 저해하여 ACh의 농도를 높일 뿐만 아니라 MAO-B효소와 활성산소에 의한 산화적 스트레스를 효과적으로 억제하여 신경전달물질을 잘 보존하여 인지능력 개선에 도움이 될 것으로 생각된다. 그러나 표고버섯의 급여기간 및 첨가수준을 달리한 계속적인 연구가 계속되어야 할 것으로 생각되며, 이러한 결과를 근거로 한 표고버섯 소재의 다양한 제품 개발과 부가가치 향상이 가능할 것으로 기대된다.

Keywords

References

  1. Ministry and Health Welfare. 1999. 98 National health and nutrition survey report. Korea institute for health and social affairs
  2. Wei QQ, Marshal FF. 2005. Insulin, insulin-degrading enzyme and arnyloid-$\beta$ peptide in Alzheimer's; review and hypothesis. Neurobiology of Aging in press
  3. Arvanitakis Z, Wilson RS, Bienias JL, Evans DA. 2004. Diabetes mellitus and risk of Alzheimer's disease and decline in cognitive function. Archiv Neurol 61: 661-666 https://doi.org/10.1001/archneur.61.5.661
  4. Ott A, Stolk RP, Hofman A, Harskamp FV, Grobbee DE, Breteler MMB. 1996. Association of diabetes mellitus and dementia: The Rotterdam Study. Diabetologia 39: 1392-1397 https://doi.org/10.1007/s001250050588
  5. Messier C, Gagnon M. 1996. Glucose regulation and cognitive function: relation to Alzheimer's disease and diabetes. Behavioural Brain Research 75: 1-11 https://doi.org/10.1016/0166-4328(95)00153-0
  6. Schulz V. 2003. Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 10: 74-79 https://doi.org/10.1078/1433-187X-00302
  7. William RM. 1997. Oxidative stress hypothesis in Alzhemier's disease free radical. Free Radic Biol Med 23: 134-147 https://doi.org/10.1016/S0891-5849(96)00629-6
  8. Montine TJ, Diana NM, Quinn JF, Beal MF, Markesbery WR, Roberts LJ, Morrow JD. 2002. Lipid peroxidation in aging brain and Alzhemiers disease. Free Redic Biol Med 33: 620-626 https://doi.org/10.1016/S0891-5849(02)00807-9
  9. Domenico P, Norman D. 2000. Oxidative injury in diseases of the central nervous system: focus on Alzheimer's disease. Am J Med 109: 577-585 https://doi.org/10.1016/S0002-9343(00)00547-7
  10. Domenico P. 2002. Alzheimer's disease and oxygen radicals: new insights. Biochemical Pharmacology 63: 563-567 https://doi.org/10.1016/S0006-2952(01)00919-4
  11. Cha DY, Yu JH, Kim GP. 1985. Method of mushroom cultivation. Sangrocksa, Suwon. p 3-45
  12. National Rural Living Science Institute. 2001. Food composition table. 6th ed. p 156-157
  13. Kim YD, Kim KJ, Cho DB. 2003. Antimicrobial activity of Lentinus edodes extract. Korea J Food Preservation 10: 89-93
  14. Cho YJ, Kim HA, Kim EH. 2002. Effects of dietary mushroom on blood glucose levels, lipid concentrations and glutathione enzymes in streptozotocin-induced diabetic rats. Korean J Nutr 35: 183-191
  15. Park JM, Lee SH, Kim JO, Park HJ, Park JB, Sin JI. 2004. In vitro and in vivo effects of extracts Lentinus edodes on tumor growth in a human papilloma virus 16 oncogenes transformed animal tumor model: Apoptosis-mediatcd tumor cell growth inhibition. Korean J Food Sci Technol 36: 141-146
  16. Park MH, Oh KY, Lee BW. 1998. Anti-cancer activity of Lentinus edodes and Pleurotus astreatus. Korean J Food Sci Technol 30: 702-708
  17. Lowry OH, Roseborough NJ, Farr LA, Randall RJ. 1951. Protein measurement with the folin-phenol reagent. J Biol Chem 193: 265-275
  18. Galgani F, Bocquene G, Cadiou Y. 1992. Evidence of variation of cholinesterase activity in fishes along a pollution gradient in the north sea. Mar. Ecol Prog Ser 19: 1-6 https://doi.org/10.3354/meps019001
  19. Hallak M, Giacobini E. 1987. A comparison of the effects of two inhibitors on brain cholinesterase. Neuropharmacol 26: 521-530 https://doi.org/10.1016/0028-3908(87)90143-2
  20. Kalaria RN, Mitchell MJ, Harik SI. 1987. Correlation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity with blood-brain barrier monoamine oxidase activity. Proc Natl Acad Sci 84: 3521-3525
  21. Choi JH, Yu BP. 1990. Unsuitability of TBA test as a lipid peroxidation marker due to prostaglandin synthesis in the aging kideny. AGE 13: 61-64 https://doi.org/10.1007/BF02432391
  22. Choi JH, Kim DI, Baek SJ, Park SH, Kim NJ, Cho WK, Kim KJ, Kim HS. 2004. Effects of pine needle ethyl acetate fraction on acetylcholine (ACh) and its related enzymes in brain of rats. Korean J Nutr 37: 95-99
  23. Choi JH, Kim DI, Park SH, Kim JM, Cho WK, Lee HS, Ryu KS. 2000. Effects of silkworm (Bombyx mori L.) powder on lipofuscin, acetylcholine and its related enzymes activities in brain of SD rats. Korean J Life Science 10: 564-569
  24. Kim JS, Kim YS, Kim SK, Heor JH, Lee BH, Choi BW, Ryu GS, Park EK, Zee OP, Ryu SY. 2002. Inhibition effects of some herbal extract on the acetylcholinesterase (AChE) in vitro. Kor J Pharmacogn 33: 211-218
  25. Oh MH, Houghton PJ, Whang WK, Cho JH. 2004. Screening of Korean herbal medicines used to improve cognitive funciton for anti-cholinesterase activity. Phytomedicine 11: 544-548 https://doi.org/10.1016/j.phymed.2004.03.001
  26. Schulz V. 2003. Ginkgo extract or cholinesterase inhibitors in patients with dementia: what clinical trials and guidelines fail to consider. Phytomedicine 10: 74-79 https://doi.org/10.1078/1433-187X-00302
  27. Weinstock M, Gorodetsky E, Poltyrev T, Gross A, Sagi Y, Youdim M. 2003. A novel cholinesterase and brain-selective monoamine oxidase inhibitor for the treatment of dementia comorbid with depression and Parkinson's disease. Progress in N euro- Psychopharmacology & Biological Psychiatry 27: 555-561 https://doi.org/10.1016/S0278-5846(03)00053-8
  28. Riederer P, Danielczyk W, Grunblatt E. 2004. Monoamine oxidase-B inhibition in Alzheimer's disease. Neurotoxicology 25: 271-277 https://doi.org/10.1016/S0161-813X(03)00106-2
  29. Yoon YJ, Jeong JC. 2000. Effects of holotrichia on acetylcholinesterase and monoamine oxidase activities in rat's brain. J Oriental Chrf Dis 6: 270-278
  30. Melo JB, Agostinho P, Oliveira CR. 2003. Involvement of oxidative stress in enhancement of acetylcholinesterase activity induced by amyloid beta-peptide. Neuroscience Research 45: 117-127 https://doi.org/10.1016/S0168-0102(02)00201-8
  31. Choi JH, Kim DI, Park SH, Kim JM, Lee JS, Lee KG, Yeo JH, Lee YW. 2000. Effects of silk fibroin on oxidative stress and membrane fluidity in brain of SD Rats. Korean J Life Science 10: 511-518

Cited by

  1. Effect of Dropwort (Oenanthe javanica) Extracts on Memory Improvement in Alzheimer's Disease Animal Model, Tg2576 mice vol.47, pp.6, 2015, https://doi.org/10.9721/KJFST.2015.47.6.779
  2. Effects of Cynanchi Wilfordii Radix and Polygoni Multiflori Radix liquors on lipid peroxidation and antioxidant activity in rat serum amd brain tissue vol.26, pp.3, 2005, https://doi.org/10.11002/kjfp.2019.26.3.350