DOI QR코드

DOI QR Code

Preparation of Mono-Disperse Ni Powder for Multilayer Ceramic Capacitor by Solution-Reduction Method

용액환원법에 의한 MLCC용 단분산 니켈 미분말의 합성

  • Kim, Kang-Min (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University) ;
  • Yoon, Seon-Mi (Materials and Devices Laboratory, Samsung Advanced Institute of Technology) ;
  • Lee, Yong-Kyun (Materials and Devices Laboratory, Samsung Advanced Institute of Technology) ;
  • Lee, Hyun-Chul (Materials and Devices Laboratory, Samsung Advanced Institute of Technology) ;
  • Choi, Jae-Young (Materials and Devices Laboratory, Samsung Advanced Institute of Technology)
  • Published : 2005.10.01

Abstract

A mono-disperse Ni powders for multilayer ceramic capacitors were prepared in a large scale by solution reduction method using $NiSO_{4}$ $N_{2}$$H_{4}$and NaOH. The exothermic reactions such as Ni-complex formation between highly concentrated $NiSO_{4}$ and $N_{2}$$H_{4}$ and the reduction of $Ni^{2+}$ into Ni provided thermal energy sufficient for spontaneous solution-reduction reaction. Because well-defined Ni particles could be prepared without external heating, the present method was named as 'auto-thermal method'. The formation of Ni­complex, the precipitation of $Ni(OH)_{2}$ gel triggered by NaOH addition, and its reduction into Ni by dissolution-recrystallization route were the reaction mechanism. The preparation of mono-disperse and spherical Ni powder was attributed to uniform distribution of reducing agent $N_{2}$$H_{2}$ within $Ni(OH)_{2}$ gel due to the decomposition of$NiSO_{4}$-$N_{2}$ $H_{4}$ complex.

Keywords

References

  1. C. M. Liu, W. L. Liu, S. H. Hsieh, T. K. Tsai, and W. J. Chen, 'Interfacial Reaction of Electroless Nickel Thin Films on Silicon,' Appl. Surf Sci. Phys., 243 259-64 (2005) https://doi.org/10.1016/j.apsusc.2004.09.110
  2. D.J. Huang, T. Sambaisah, and C. H. Cheng, 'Nickel-Catalysed Cocyclotrimerization of Oxa- and Azarbenzonorbornadienes with Alkynes : Reaction with Multiple Synthetic Application,' New J. Chem., 1147-49 (1998)
  3. S. Amoruso, G. Ausanio, C. de Lisio, V. Iannotti, M. Vitiello, X. Wang, and L. Lanotte, 'Synthesis Nickel Nanoparticles and Nanoparticles Magnetic Films by Femtosecond Laser Ablation in Vacuum,' Appl. Surf Sci., 247 71-5 (2005) https://doi.org/10.1016/j.apsusc.2005.01.054
  4. W. Z. Zhu and S. D. Deevi, 'A Review on the Anode Materials for Solid Oxide Fuel Cells,' Mater. Sci. Eng. A, 362 228-39 (2003) https://doi.org/10.1016/S0921-5093(03)00620-8
  5. H. Kishi, Y. Mizuno, and H. Chaozono, 'Base-Metal Electrode-Multilayer Ceramic Capacitors: Past, Present, and Future Perspectives,' Jpn. J. Appl. Phys., 42 1-15 (2003) https://doi.org/10.1143/JJAP.42.1
  6. Y. Sakabe and T. Reynolds, 'Base-Metal Electrode Capacitors,' Am. Ceram. Soc. Bull., 81 [10] 24-6 (2001)
  7. S. Sato, Y. Nakano, A. Sato, and T. Nomura, 'Mechanism of Improvement of Resistance Degradation in Y-Doped $BaTiO_3$ Based MLCCs with Ni Electrodes under Highly Accelerated Life Testing,' J. Euro. Ceram. Soc., 19 1061-65 (1999) https://doi.org/10.1016/S0955-2219(98)00374-4
  8. J. G. Pepin, W. Borland, P. O'Callaghan, and R. J. S. Young, 'Electrode-Based Causes of Delaminations in Multilayer Ceramic Capacitors,' J. Am. Ceram. Soc., 72 [12] 2287-91 (1989) https://doi.org/10.1111/j.1151-2916.1989.tb06076.x
  9. J.-Y. Lee, J.-H. Lee, S.-H. Hong, Y. K. Lee, and J.-Y. Choi, 'Coating $BaTiO_3$ Nanolayers on Spherical Ni Powders for Multilayer Ceramic Capacitor,' Adv. Mater., 15 1655-57 (2003) https://doi.org/10.1002/adma.200305418
  10. J.-Y. Lee, S.-H. Hong, J.-H. Lee, Y. K. Lee, and J.-Y. Choi, 'Uniform Coating of Nanometer-Scale $BaTiO_3$ Layer on Spherical Ni Particles via Hydrothermal Conversion of Ti-Hydroxide,' J. Am. Ceram. Soc., 88 [2] 303-07 (2005) https://doi.org/10.1111/j.1551-2916.2005.00104.x
  11. J.-H. Hwang, V. P. Dravid, M. H. Teng, J. J. Host, B. R. Elliott, D. L. Johnson, and T. O. Mason, 'Magnetic Prop¬erties of Graphically Encapsulated Nickel Nano Crystals,' J. Mater. Res., 12 [4] 1076 (1997) https://doi.org/10.1557/JMR.1997.0150
  12. S. Stopic, J. Nedeljkovic, S. Rakocevic, and D. Uskokovise, 'Influence of Additives on the Properties of Spherical Nickel Particles Prepared by Ultrasonic Spray Pyrolysis,' J. Mater. Res., 14 [7] 3059-65 (1999) https://doi.org/10.1557/JMR.1999.0410
  13. B. Xia, I. W. Lenggoro, and K. Okuyama, 'The Roles of Ammonia and Ammonium Bicarbonate in the Preparation of Nickel Particles from the Nickel Chloride,' J. Mater. Res., 15 [10] 2157-66 (2000) https://doi.org/10.1557/JMR.2000.0311
  14. C.-H. Jung, S. Jalota, and S. B. Bhaduri, 'Quantitative Effects of Fuel on the Synthesis of Ni/NiO Particles Using a Microwave-Induced Solution Combustion Synthesis in Air Atmosphere,' Mater. Lett., 59 2426-32 (2005) https://doi.org/10.1016/j.matlet.2005.03.021
  15. F. Fievet, J. P. Lagier, and M. Figlarz, 'Preparing Monodisperse Metal Powders in Micrometer, and Submicrometer Sizes by the Polyol Process,' MRS. Bull., 14 29-33 (1989) https://doi.org/10.1557/S0883769400060930
  16. V. Viau, F. Fievet-Vincent, and F. Fievet, 'Nucleation and Growth of Bimetallic CoNi and FeNi Monodisperse Particles Prepared in Polyols,' Solid State Ionics, 84 259-70 (1996) https://doi.org/10.1016/0167-2738(96)00005-7
  17. D.-H. Chen and S.-H. Wu, 'Synthesis of Nickel Nanoparticles in Water-in-Oil Microemulsion,' Chem. Mater., 12 1354-60 (2000) https://doi.org/10.1021/cm991167y
  18. Y. D. Li, C. W. Li, H. R. Wang, L. Q. Li, and Y. T. Qian, 'Preparation of Nickel Ultrafine Powder and Crystalline Film by Chemical Control Reduction,' Mater. Chem. and Phys., 59 88-90 (1999)
  19. Z. Gui, R. Fan, W. Mo, X. Chen, L. Yang, and Y. Hu, 'Synthesis and Characterization of Reduced Transition Metal Oxides and Nanophase Metals with Hydrazine in Aqueous Solution,' Mater. Res. Bull., 38 169-76 (2003) https://doi.org/10.1016/S0025-5408(02)00983-2
  20. J. Gao, F. Guan, Y. Zhao, W. Yang, Y. Ma, X. Lu, J. Hou, and J. Kang, 'Preparation of Ultrafine Nickel Powder and Its Catalytic Dehydration Activity,' Mater. Sci. Communication, 71 215-19 (2001)
  21. R. S. Sapieszko and E. Matijevie, 'Preparation of Well Defined Colloidal Particles by Thermal Decomposition of Metal Chelates: Il. Cobalt and Nickel,' Corrosion-Nace, 36 [10] 522-30 (1980) https://doi.org/10.5006/0010-9312-36.10.522
  22. J.-Y. Choi, Y.-K. Lee, S.-M. Yoon, H. C. Lee, B.-K. Kim, J. M. Kim, K.-M. Kim, and J.-H. Lee, 'A Chemical Route to Large-Scale Preparation of Spherical and Mono-Disperse Ni Powders,' J. Am. Ceram. Soc., in press
  23. A.-G. Boudjahem, S. Monteverdi, M. Mercy, and M. M. Bettahar, 'Study of Support Effects on the Reduction of $Ni^{2+}$ Ions in Aqueous Hydrazine,' Langmuir, 20 208-13 (2004) https://doi.org/10.1021/la035120+
  24. T. Sugimoto, X. Zhou, and A. Muramatsu, 'Synthesis of Uniform $TiO_2$ Nanoparticles by Gel-Sol Method: 3. Formation Process and Size Control,' J. Colloid Interface Sci., 259 43-52 (2003) https://doi.org/10.1016/S0021-9797(03)00036-5
  25. A. Muramatsu and T. Sugimoto, 'Synthesis of Uniform Spherical $Cu_2O$ Particles from Condensed CuO Suspensions,' J. Colloid Interface Sci., 189 167-73 (1997) https://doi.org/10.1006/jcis.1997.4806

Cited by

  1. Numerical Analysis on RF (Radio-frequency) Thermal Plasma Synthesis of Nano-sized Ni Metal vol.26, pp.5, 2013, https://doi.org/10.4313/JKEM.2013.26.5.401