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ABSTRACT

In this paper, we study the average case error of the Trapezoidal rule using zero mean-Gaussian. Assume that we have n subintervals
(for simplicity equal length) partitioning [0,1] and that each subinterval has the length A. Then, for r<2, we show that the average error
between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is bounded by e through direct

computation of constants ¢
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1. Introduction

Many numerical computations in science and engineer—
ing can only be solved approximately since the available
in formation is partial. For instance, for problems defined
on a space of functions, information about f is typically
provided by a few function values,

N(fy=[/(xp),(x2), JS(x)].
Knowing N(f), the solution is approximated by a numer-
ical method.

The error between the true solution and the approx-
imation depends on a problem setting. In the worst case
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setting, the error of a numerical scheme is defined by
its worst performance with respect to the given class of
functions; see [1, 4] and [6]. In this paper, we concentrate
on another setting, the average case setting. In this
setting, we assume that the class F of input functions is
equipped with a probability measure. Then the average
case error of an algorithm is defined by its expectation,
rather than by its worst case performance. The average
case analysis is important and significant number of re—
sults have already been obtained (see, eg., [6] and the
references cited therein).

2. Definitions

It is well known that the average case setting requires
the space of functions to be equipped with a probahility
measure. In this paper, we choose a probability measure
4 which is a variant of an ,~fold Wiener measure -
see[3, 5] and [6]. The probability measure @ is a
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Gaussian measure with zero mean and correlation func-
tion given by

I

M@= [ DA wlap
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dt,

where (z—# " =[max {0, z— 1" Equivalently, f dis-
tributed according to @ can be viewed as a Gaussian
stochastic process with zero mean and autocorrelation
given above. However, since @ is concentrated on functions
with boundary conditions AQ)=fF(0)=--=7"(0)=0,
we choose to study a slightly modified measure g that
preserves basic properties of @, yet does not require any
boundary conditions. More precisely, we assume that a
function f, as a stochastic process, is given by
Ax) = A+ f,(1—x), x=[0,1], where fi and f are
independent and distributed according to .

In this paper, as the class F of input functions, we
choose the space F= (7[0,1] that is equipped with a
probability measure g4 which is a varant of the ,—fold
Wiener measure. In order to define it, if we first recall
basic properties of the classical ,-fold Wiener measure
@, then according to [2-5], the probability measure 4
defined on o-field of the space (C7[0,1] is zero mean

Gaussian with the correlation function given by

M, (Ax),Ay))

_ fl (== +10—x—H . U—y—D
0 rlr!

v
- dt

=f01 (x—t)l(y—t)lrmt—x)i(t—y)i .

We study the problem of approximating an integral
I(f)zfolf{x)dx for feF=(C"0,1], assuming that the

class of integrands is equipped with the probability meas-
ure fi.
Assume that we have n subintervals (not necessarily

equal length) partitioning [0,1]. Let (= x,<x <<

% y_1{x,=1. But for simplicity, we let x,=s for

i=0,-,n Where h:—b. With this indexing, we get

L= [ dr and 1o = WA )+ xi)

while 7T; is the basic Trapezoidal rule using Ax;_,)
and Ax ;). Let 7; be the composite Trapezoidal rule
that uses Ax, ), Axp) and Ax,.,). L&, T{H=

B ) T2 )+ fx ). Also et v(p=

S (Tdp— 1),

3. An error bound on two consecutive subintervals

In this section, we consider two consecutive subintervals.
In order to find a new error bound for the subintervals,
we need to compute the distributions of Vi In fact, they
are Gaussian with zero-mean and are given in next
theorem. This is the main result of this paper.

Theorem. For »<?2,
Mu,( Vx'Vi) =0,¢,h 2’+3,

for <j,

where 0 is the Kronecker delta and the constants G are

independent of A's and equal respectively: co:—llg,
1 _ _h81

1= Tgz 4 &="TFluyg -

Proof. Let Vv,=V(f) ad V,=V,(f). Then

VAH=V;+ V5 and due to the independence of f, and
fpwehave M, (V,V)=M, (Vi V;)+M V5V

It is easy to see that
V,‘(f)z_g_vif= VATV S,

where h=(x;;,—x,-1)/2 and v f=FAx ;) —2Ax)+
Ax iyp). Now,

M, (VaVy)
I R | B 2 |

7! 8 7!

_ fOlLﬂ(t) L a(dar,

where L; is the first term and Lj is the second term in
above integral. Since Ly(6)=0 for t<x,,, '

Mw,(ViIVil)zj; ' La(® - Ly(Dadt.



Similarly,

1
M, (VaVi)= fx - L 5(® - L ,(Ddt.

Since we can easily show that the operator v, is exact

for polynomials of degree <2, [ a=0 for t<x,,, and
L =0 for x>y, Therefore for i¢j, M, (V;V;)=0.

We now compute the case of i=; for M, (V;V)=

M, (VaV)+M (Vi Via)

=M, ([Vu]Z) 1)

We now compute [—-g‘v,-((—rm”—)] o [x, y,%;41]

[x;_y,x ;4] By the definition of v,

SR
|

If we apply the equation (1) to (2) by setting z= %‘;L )

then we have

SR

(x i_' nh + (x i+1'_
7! 7!

-2

e

- ‘{ _h_{ @2n"0—w?, (211)’(~,}—u)’+
B fo 8 7! —2 7

N (2h)’(71!——u); )]ZWu

ca h2r+3,

W =20 =0+ (- u)g]zdu

where

cn= 32(7,)2f[(o W, —2(12=wi+1—wi) du.

we have ¢ ,=c,.
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Similarly, we compute M, (V ,V ;) using u:—t—_—zxillil,

M (V,Va)=M, ([Vz])
- [ e

— fx.”[ _h_( (z— xz 1)7 _9 (t—x )%

!

AT

- 1]

. +—t(2h)r;§‘"l)r )] Qhdu

(u—0)%
(ﬂh)—o 220" (u= 1)}

2 2r E 2r+3
32(#!1)?

[ 0201+ (w14 | au

— C;’Zh27+3

>

where

__2¥ , 1 12

Since

[l@-wi-2(F-wi+a- u):]zdu

- fol[(u—O)Cr—Z(u—‘;‘)lﬂ—(u—l)irdu

Therefore, ¢,=c ,+c¢ ,=2c,

For =9,

Cop= ZCOI
1 2
= 2-_3]2—_#[(0—u)9+—2(—2L—u)q++(1—u)°+] du
2 2
=5 [(Ol—u)ﬁ—Z(‘zL—u)qﬁ(l—u)‘l] “
Jgf%[(o—u)&—Z(%—u)‘H(l—u)‘L] du

1

_ 1 ri 2 1 !
= 46 ). [—2+1laur ¢ sz_du
_ L
16
For »=1,
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= 2C11

2
~ 3. —3%fol[(o—u)L—z(%—u>1++(1—u)a] du
-1

—lgf()2[—2(%—u)++(1—u)+]2du |
_%f_lé_[(O—u)+—2(_%‘—u)++(1—u)+} »

a
= _%fo 2[‘2(“;“—u)+(1—u)]2du+—1]gf;(l—u)%]u

R
192 -

Finally, for »=2,

= 2cq 1 2
= 2.5 [[O0-wi—2F - wi+(1- "] au
1
2 2
= —[lffo [(Ol—u)i—Z(—ZL—u)%r+(1—u)2+] du 2
+_;_f%[(o_u)a—Z(‘zL—u)a+(l—u)2+] du

1
= ‘ili‘foz[—Z(—]z‘—u)z-i—(l—u)z]zdu
”%fl[(l—u)zlzdu
2

_ 081
61440 -

This completes the proof.

3. Conclusion

For Simplicity, we have chosen n g equal length sub-
intervals partitioning [0, 1]. However it is not necessary
because if we take h as the largest length of sub-
intervals, then it is straightforward to have the same
result. Moreover, if we can compute an error bound for r
>3 which is more complicated of course, then it will lead
us to compute covariance of average error. We will ex—
plore this in the later paper.
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