Dynamics Analysis for Flexible Systems using Finite Elements and Algebraic Quaternions

4원법과 유한요소를 이용한 유연체 동역학의 해석기법

  • 이동현 (금오공과대학교 자동차공학부) ;
  • 윤성호 (금오공과대학교 기계공학부)
  • Published : 2005.06.01

Abstract

This paper deals with formulations of the energy equilibrium equation by an introduction of the algebraic description, quarternion, which meets conservations of system energy for the equation of motion. Then the equation is discretized to analyze the dynamits analysis of flexible multibody systems in such a way that the work done by the constrained force completely is eliminated. Meanwhile, Rodrigues parameters we used to express the finite rotation lot the proposed method. This method lot the initial essential step to a guarantee of developments of the 3D dynamical problem provides unconditionally stable conditions for the nonlinear problems through the numerical examples.

본 논문에서는 유연체 동역학해석을 위하여 유한회전을 표현하는데 있어, 4원법의 대수학적인 표현을 도입하여 운동방정식이 에너지보존 조건을 만족하도록 이산화된 에너지 평형식으로 정식화되었다. 여기서 사용된 유한회전의 4원법은 로드리게스 매개변수를 이용하도록 하였으며, 구속력에 대한 일이 제거되도록 하였다. 수치해석의 예를 통하여 제안된 방법이 사다리꼴 방법과 비교할 때 비선형 문제에서도 무조건적으로 안정조건을 보장함을 검증하였으며, 향후 유연한 관절로 연결된 3차원 유연다물체에 대한 동역학 해석을 확장할 수 있는 토대를 마련하였다.

Keywords

References

  1. 홍준표(1999) C 및 FORTRAN에 의한 컴퓨터 수치 해석, 문운당, p.458
  2. Antes. H ., Shanz , M ., Alvermann. S.(2004) Dynamic Analyses of Plane Frames by Integral Equations for Bars and Timoshenko Beams, Journal of Sound and Vibration, 276, pp.807-836 https://doi.org/10.1016/j.jsv.2003.08.048
  3. Bauchau. O.A ., Bottasso. C.L ., Nikishkov Y.G. (2001) Modeling Rotorcraft Dynamics with Finite Element Multibody Procedures, Mathematical and Computer Modeling, 33, pp.1113-1137 https://doi.org/10.1016/S0895-7177(00)00303-4
  4. Bottasso . C.L ., Borri M.( 1997) Energy Preserving/Decaying Schemes for Nonlinear Beam Dynamics Using the Helicoidal Approximation, Computer Mechanics in Applied Mechanics and Engineering, 143, pp.393-415 https://doi.org/10.1016/S0045-7825(96)01161-9
  5. Geradin. M., Cardona A.(2001) Flexible Multibody Dynamics, John Wiley & Sons Ltd., p.327
  6. Hilber , H.M ., Hughes. T.J.R ., Taylor, R.L.(1977) Improved Numerical Dissipation for Time Integration Algorithms in Structural Dynamics. Earthquake Engineering and Structural Dynamics. 5. pp.282-292
  7. Householder. A.S.(1953) Principles of Numerical Analysis. McGraw-Hill, Inc., p.274
  8. Liu , J.Y ., Hong. J.Z. (2003) Geometric Stiffening of Flexible Link System with Large Overall Motion. Computers & Structures. 81. pp.2829-2841 https://doi.org/10.1016/j.compstruc.2003.07.001
  9. Kane T.R., Likins P. W., Levinson D.A. (1983) Spacecraft Dynamics. McGraw-Hill Co., p.436
  10. Nikravesh , P.E.(1988) Computeraided Analysis of Mechanical Systems, Prentice-Hall. New Jersey. p.370
  11. Simo . J. C., Wong. K.(1991) Unconditionally Stable Algorithms for Rigid Body Dynamics that Exactly Preserve Energy and Momentum, International Journal for Numerical Methods in Engineering, 3, pp.19-52
  12. Simo , J. C., Tarnow. N.(1992) The Discrete Energy-momentum Conserving Algorithms for Nonlinear Dynamics, ZAMP. 43, pp. 757-792 https://doi.org/10.1007/BF00913408
  13. Simo. J. C., Tarnow. N ., Doblare , M.(1995) Non-linear Dynamics of Three-dimensional Rods: Exact Energy and Momentum Conserving Algorithms, International Journal of Numerical Methods in Engineering, 38, pp .1431-1473 https://doi.org/10.1002/nme.1620380903