Technological Trend of Crystallization Research for Bioproduct Separation

Bioproduct 분리를 위한 결정화 연구 동향

  • Kim, Woo-Sik (Department of Chemical Engineering, Kyunghee University) ;
  • Lee, Eun-Kyu (Department of Chemical Engineering, Hanyang University)
  • Published : 2005.06.01

Abstract

In bioengineering field, current academic trends and informations on crystallization technology for bioproduct separation were summarized. It is essential for utilizing the crystallization technology to understand the fundamental phenomena of crystallization of crystal nucleation, crystal growth, crystal agglomeration and population balance for the design of crystallizers. In general, the crystal nucleation that the crystalline solids occur from the solution is analyzed by Gibb's free energy change in the aspect of thermodynamics and in the present paper the crystal nucleation models based on the above thermodynamics are summarized by their key characteristics. The crystal growth and agglomeration, which have been studied over 50 years and are essential phenomena for separation technology, are reviewed from their basic concept to most leading edge trend of researches. In the material and population balances for the designs of crystallization separation process, the analysis of crystallizers is summarized. Thereon, the present review paper will academically contribute the understanding the crystallization phenomena and the design of the crystallization separation process.

Keywords

References

  1. Shin, D.-M. and Kim, W.-S. (2002), Drowning-out crystallization of L-ornithine-aspartate in turbulent agitated reactor, J. Chem. Eng. Japan, 35, 1083-1090 https://doi.org/10.1252/jcej.35.1083
  2. Melander, W. and Horvath, C. (1977), Salt Effects on hydrophobic interactions in precipitation and chromatography of proteins: an interpretation of the Iyotrophic series, Arch. Biochem. Biophys, 183, 200-209 https://doi.org/10.1016/0003-9861(77)90434-9
  3. Ataka, M. (1986), Growth of large single crystals of lysozyme, Biopolymers, 25, 337-349 https://doi.org/10.1002/bip.360250213
  4. Mersmann, A. (1995), Crystallization Technology Handbook, Marcel Dekker, New York, U.S.A
  5. Mullin, J. W. (1993), Crystallization, 3rd ed., Butterworth-Heinemann, Oxford, U.K
  6. Knapp, L. F., (1922), The solubility of small particles and the stability of colloids, Trans. Faraday Soc., 17, 457-465 https://doi.org/10.1039/tf9221700457
  7. Volmer, M. and Webber, A. (1926), Keimbildung in ubersttigten Gebilden, Z. Physik. Chem., 119, 71-73
  8. Nielsen, A. E. (1964), Kinetics of Precipitation, Pergamon Press, New York, U.S.A
  9. Karpinski, P. H. (1985), Importance of the two-step crystal growth model, Chem. Eng. Sci., 40, 641-649 https://doi.org/10.1016/0009-2509(85)80009-9
  10. Macy, J. C. and Cournil, M. (1991), Using a turbidimetric method to study the kinetics of agglomeration of potassium sulfate in a liquid medium, Chem. Eng. Sci., 46, 693-701 https://doi.org/10.1016/0009-2509(91)80030-3
  11. Wojcik, J. A. and Jones, A. G. (1998), Particle disruption of calcium carbonate crystal agglomerates in turbulently agitated suspensions, Chem. Eng. Sci., 53, 1097-1101 https://doi.org/10.1016/S0009-2509(97)00400-4
  12. McCabe, W. L. and Smith J. C. (1976), Unit operations of chemical engineering, 5thed., McGraw-Hill, Koshaido Printing Company, Tokyo, Japan
  13. Ayazi Shamlou, P. and Titchner-Hooker, N. (1993), Turbulent aggregation and breakup of particles in liquid in stirred vessel, Processing of solid-liquid suspension, ed. by Ayazi Shamlou, pp. 1-25, Butterworth-Heinemannm, Oxford, U.K
  14. Nyvilt, J. and Ulrich, J. (1995), Admixtures in crystallization, VCH, Weinheim, Germany
  15. Rauls, M., Bartosh, K., Kind, M., Kuch, St., Lacmann, R. and Mersmann, A. (2000), The influence of impurities of crystallization kinetics - a case study on ammonium sulfate, J. Crystal Growth, 213, 116-128 https://doi.org/10.1016/S0022-0248(00)00323-7
  16. Lin, S-X., Sailofsky, B., Lapointe, J. and Zhou, M. (1992), Preparative fast purification procedure of various proteins for crystallization, J. Cryst. Growth, 122, 242-245 https://doi.org/10.1016/0022-0248(92)90252-E
  17. Park, D. H., Lee, H. J. and Lee, E. K. (1997), Crystallization of alkaline protease as a means of purification process, Korean J. of Chem. Eng., 14(1), 64-68 https://doi.org/10.1007/BF02706043
  18. Rousseau, R. W., Tai, C. Y. and McCabe, W. L. (1976), The influence of quinoline yellow on potassium alum growth rates, J. Cryst. Growth, 32, 73 https://doi.org/10.1016/0022-0248(76)90011-7
  19. Rousseau, R. W. and Woo, R. (1980), Effects of operating variables on potassium alum crystal size distribution, AIChE Symp. Ser. No. 193, 76, 27
  20. Myerson, A. S., Weisinger, Y. and Ginde, R. (1993), Crystal shape, the role of solvents and impurities, Industrial Crystallization'93, ed. by Rojkowski, Z., pp. 3-135, Warsaw
  21. Cabrera, N, and Verrnileya, D. (1958), Growth and Perfection of Crystals, ed. by Doremus, R. H. and Turnbull, D., p. 393, Wiley and Sons, Inc., New York, U.S.A
  22. Punin, Y. O. and Franke, V. D. (1998), Effect of carbamide adsorption on the growth kinetics of the ammonium chloride crystals, Crystal Res. Tech., 33, 166-172
  23. Kubota, N., Yokota, M. and Mullin, J. W. (1996), Kinetic models for the crystal growth from aqueous solution in the presence of impurities; Steady and unsteady state impurity actions, in Proceedings of the 13th Symposium on Industrial Crystallization, 111-116, Toulouse, France
  24. Kim, W. S. and Tarbell, J. M. (1993), Effect of PVA and Gelatin additives on barium sulfate precipitation in an MSMPR reactor, Chem. Eng. Comm., 120, 119-137 https://doi.org/10.1080/00986449308936129
  25. Heller, W. (1966), Effect of macromolecular components in dispersion systems, Pure & Appl. Chem., 12, 249-250 https://doi.org/10.1351/pac196612010249
  26. Michaels, A. S. and Colville, A. R. (1967), The effect of surface active agents on crystal growth rate and crystal habit, J. Phys. Chem., 64, 13 https://doi.org/10.1021/j100830a005
  27. Michaels, A. and Tausch Jr., F. W. (1961), Modification of growth rate and habit of adipic acid crystals with surfactants, J. Phys. Chem., 65, 1730-1737 https://doi.org/10.1021/j100827a014
  28. Rauls, M., Bartosh, K., Kind, M., Kuch, St., Lacmann, R. and Mersmann, A. (2000), The influence of impurities of crystallization kinetics - a case study on ammonium sulfate, J. Crystal Growth, 213, 116-128 https://doi.org/10.1016/S0022-0248(00)00323-7
  29. Kim, W. S. and Tarbell, J. M. (1991), Numerical technique for solving population balance in precipitation processes, Chem. Eng. Comm., 101, 115-129 https://doi.org/10.1080/00986449108911606
  30. Moyers, C. G., Jr. and Rousseau, R. W. (1987), Crystallization operations, in 'Handbook of separation process technology', edited by R. W. Rousseau, John Wiley & Sons, Inc., New York, U.S.A
  31. Mullin, J. W. (1972), Crystallisation techniques, in 'Crystallisation,' 2nd ed., Butterworths, London, pp. 233-257