INTUITIONISTIC FUZZY IDEALS OF A RING

KUL HUR, SU YOUN JANG, AND HEE WON KANG

ABSTRACT. We introduce the notions of intuitionistic fuzzy prime ideals, intuitionistic fuzzy completely prime ideals and intuitionistic fuzzy weakly completely prime ideals. And we give a characterization of intuitionistic fuzzy ideals and establish relationships between intuitionistic fuzzy completely prime ideals and intuitionistic fuzzy weakly completely prime ideals.

0. Introduction

Zadeh [17] introduced the notion of a fuzzy set in a set X as a mapping from X into the closed unit interval $[0,1]$. Rosenfeld [16] applied this concept to group theory. After that time, Das [7], Kumar [11], Liu [13] and Mukherjee & Sen [14, 15] applied this notion to group and ring theory.

In this paper, we introduce the notions of intuitionistic fuzzy prime ideals, intuitionistic fuzzy completely prime ideals and intuitionistic fuzzy weakly completely prime...
prime ideals. And we give a characterization of intuitionistic fuzzy ideals and establish relationships between intuitionistic fuzzy completely prime ideals and intuitionistic fuzzy weakly completely prime ideals.

1. Preliminaries

We will list some concepts and one result needed in the later sections.

For sets X, Y and Z, $f = (f_1, f_2) : X \to Y \times Z$ is called a complex mapping if $f_1 : X \to Y$ and $f_2 : X \to Z$ are mappings.

Throughout this paper, we will denote the unit interval $[0, 1]$ as I.

Definition 1.1 (Atanassov [1]). Let X be a nonempty set. A complex mapping $A = (\mu_A, \nu_A) : X \to I \times I$ is called an intuitionistic fuzzy set (in short, IFS) in X if $\mu_A + \nu_A \leq 1$, where the mapping $\mu_A : X \to I$ and $\nu_A : X \to I$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non-membership (namely $\nu_A(x)$) of each $x \in X$ to A, respectively. In particular, 0_\sim and 1_\sim denote the intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined by $0_\sim(x) = (0, 1)$ and $1_\sim(x) = (1, 0)$, respectively.

We will denote the set of all IFSs in X as $\text{IFS}(X)$.

Definition 1.2 (Atanassov [1]). Let X be a nonempty set and let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be IFSs in X. Then

1. $A \subseteq B$ iff $\mu_A \leq \mu_B$ and $\nu_A \geq \nu_B$.
2. $A = B$ iff $A \subseteq B$ and $B \subseteq A$.
3. $A^c = (\nu_A, \mu_A)$.
4. $A \cap B = (\mu_A \wedge \mu_B, \nu_A \vee \nu_B)$.
5. $A \cup B = (\mu_A \vee \mu_B, \nu_A \wedge \nu_B)$.
6. $\lambda A = (\mu_A, 1 - \mu_A), \lambda A = (1 - \nu_A, \nu_A)$.

Definition 1.3 (Çoker [5]). Let $\{A_i\}_{i \in J}$ be an arbitrary family of IFSs in X, where $A_i = (\mu_{A_i}, \nu_{A_i})$ for each $i \in J$. Then

(a) $\bigcap A_i = (\wedge \mu_{A_i}, \vee \nu_{A_i})$.
(b) $\bigcup A_i = (\vee \mu_{A_i}, \wedge \nu_{A_i})$.

Definition 1.4 (Hur, Jang & Kang [9]). Let A be an IFS in a set X and let $(\lambda, \mu) \in I \times I$ with $\lambda + \mu \leq 1$. Then the set $A^{(\lambda, \mu)} = \{x \in X : \mu_A(x) \geq \lambda$ and $\nu_A(x) \leq \mu\}$ is called a (λ, μ)-level subset of A.

Definition 1.5 (S. J. Lee & E. P. Lee [12]). Let \((\lambda, \mu) \in I \times I\) with \(\lambda + \mu \leq 1\). Then an intuitionistic fuzzy point (in short, IFP) \(x_{(\lambda, \mu)}\) of \(X\) is the IFS in \(X\) defined as follows: for each \(y \in X\),

\[
x_{(\lambda, \mu)}(y) = \begin{cases}
(\lambda, \mu) & \text{if } y = x, \\
(0, 1) & \text{if } y \neq x.
\end{cases}
\]

In this case, \(x\) is called the support of \(x_{(\lambda, \mu)}\) and \(\lambda\) and \(\mu\) are called the value and nonvalue of \(x_{(\lambda, \mu)}\), respectively. An IFP \(x_{(\lambda, \mu)}\) is said to belong to an IFS \(A = (\mu_A, \nu_A)\) in \(X\), denoted by \(x_{(\lambda, \mu)} \in A\) if \(\lambda \leq \mu_A(x)\) and \(\nu_A(x) \geq \mu\).

It is clear that an intuitionistic fuzzy point \(x_{(\lambda, \mu)}\) can be represented by an ordered pair of fuzzy points as follows:

\[
x_{(\lambda, \mu)} = (x_\lambda, 1 - x_{1-\mu})
\]

We will denote the set of all IFPs in \(X\) as \(\text{IFp}(X)\).

Result 1.1 (S. J. Lee & E. P. Lee [12, Theorem 2.3]). Let \(A, B \in \text{IFS}(X)\). Then \(A \subseteq B\) if and only if for each \(x_{(\lambda, \mu)} \in \text{IFp}(X)\), \(x_{(\lambda, \mu)} \in A\) implies \(x_{(\lambda, \mu)} \in B\).

Definition 1.6 (Hur, Jang & Kang [9]). Let \((X, \cdot)\) be a groupoid and let \(A, B \in \text{IFS}(X)\). Then the intuitionistic fuzzy product of \(A\) and \(B\), \(A \circ B\) is defined as follows: for each \(x \in X\),

\[
A \circ B(x) = \begin{cases}
(\bigvee_{x=yz} [\mu_A(y) \land \mu_B(z)], \bigwedge_{x=yz} [\nu_A(y) \lor \nu_B(z)]) & \text{if } x = yz, \\
(0, 1) & \text{otherwise}.
\end{cases}
\]

Result 1.2 (Hur, Jang & Kang [9, Proposition 2.2]). Let \((X, \cdot)\) be a groupoid, let \(x_{(\lambda, \mu)}, y_{(t, s)} \in \text{IFp}(X)\) and let \(A, B \in \text{IFS}(X)\). Then

1. \(x_{(\lambda, \mu)} \circ y_{(t, s)} = (xy)_{(\lambda \land t, \mu \lor s)}\).
2. \(A \circ B = \bigcup_{x_{(\lambda, \mu)} \in A, y_{(t, s)} \in B} x_{(\lambda, \mu)} \circ y_{(t, s)}\).

Definition 1.7 (Hur, Kang & Song [10]). Let \(G\) be a group and let \(A \in \text{IFS}(G)\). Then \(A\) is called an intuitionistic fuzzy subgroup (in short, IFG) of \(G\) if it satisfies the following conditions:

\[
\begin{align*}
(i) & \quad \mu_A(xy) \geq \mu_A(x) \land \mu_A(y) \quad \text{and} \quad \nu_A(xy) \leq \nu_A(x) \lor \nu_A(y) \quad \text{for any } x, y \in G, \\
(ii) & \quad \mu_A(x^{-1}) \geq \mu_A(x) \quad \text{and} \quad \nu_A(x^{-1}) \leq \nu_A(x) \quad \text{for each } x \in G.
\end{align*}
\]

We will denote the set of all IFGs as \(\text{IFG}(G)\).
Result 1.3 (Hur, Kang & Song [10, Proposition 2.6]). Let A be an IFG of a group G with identity e. Then $A(x^{-1}) = A(x)$ and $\mu_A(x) \leq \mu_A(e), \nu_A(x) \geq \nu_A(e)$ for each $x \in G$.

Definition 1.8 (Hur, Kang & Song [10]). Let $(R, +, \cdot)$ be a ring and let $0_\sim \neq A \in \text{IFS}(R)$. Then A is called an intuitionistic fuzzy subring (in short, IFSR) of R if it satisfies following conditions:

(i) A is an IFG with respect to the operation "+".

(ii) $\mu_A(xy) \geq \mu_A(x) \land \mu_A(y)$ and $\nu_A(xy) \leq \nu_A(x) \lor \nu_A(y)$ for any $x, y \in R$.

We will denote the set of all IFSRs as $\text{IFSR}(R)$.

2. INTUITIONISTIC FUZZY IDEALS

Definition 2.1 (Hur, Kang & Song [10]). Let A be a non-empty IFSR of a ring R. Then the fuzzy subring A is called

(1) an intuitionistic fuzzy left ideal (in short, IFLI) of R if $\mu_A(xy) \geq \mu_A(y)$ and $\nu_A(xy) \leq \nu_A(y)$ for any $x, y \in R$.

(2) an intuitionistic fuzzy right ideal (in short, IFRI) of R if $\mu_A(xy) \geq \mu_A(x)$ and $\nu_A(xy) \leq \nu_A(x)$ for any $x, y \in R$.

(3) an intuitionistic fuzzy ideal (in short, IFRI) of R if it is an IFLI and an IFRI of R.

We will denote the set of all IFRIs (resp. IFLIs and IFIs) of R as $\text{IFRI}(R)$ (resp. $\text{IFLI}(R)$ and $\text{IFI}(R)$).

Result 2.1 (Hur, Kang & Song [10, Proposition 4.6]). Let R be a ring. Then A is an ideal (resp. a left ideal and a right ideal) of R if and any of $(\chi_A, \chi_{A^c}) \in \text{IFI}(R)$ (resp. $\text{IFLI}(R)$ and $\text{IFRI}(R)$).

Lemma 2.2. Let R be a ring and let $A, B \in \text{IFS}(R)$.

(1) If $A, B \in \text{IFLI}(R)$ (resp. $\text{IFRI}(R)$ and $\text{IFI}(R)$), then $A \cap B \in \text{IFLI}(R)$ (resp. $\text{IFRI}(R)$ and $\text{IFI}(R)$).

(2) If $A \in \text{IFRI}(R)$ and $B \in \text{IFLI}(R)$, then $A \circ B \subset A \cap B$.
Proof. (1) Suppose $A, B \in \text{IFLI}(R)$ and let $x, y \in R$. Then
\[
\mu_{A \cap B}(x - y) = \mu_A(x - y) \land \mu_B(x - y) \\
\geq [\mu_A(x) \land \mu_A(y)] \land [\mu_B(x) \land \mu_B(y)] \\
= \mu_{A \cap B}(x) \land \mu_{A \cap B}(y)
\]
and
\[
\nu_{A \cap B}(x - y) = \nu_A(x - y) \lor \nu_B(x - y) \\
\leq [\nu_A(x) \lor \nu_A(y)] \lor [\nu_B(x) \lor \nu_B(y)] \\
= \nu_{A \cap B}(x) \lor \nu_{A \cap B}(y).
\]
Also
\[
\mu_{A \cap B}(xy) = \mu_A(xy) \land \mu_B(xy) \\
\geq \mu_A(y) \land \mu_{AB}(y) \\
= \mu_{A \cap B}(y) \tag{Since $A, B \in \text{IFLI}(R)$}
\]
and
\[
\nu_{A \cap B}(xy) = \nu_A(xy) \lor \nu_B(xy) \leq \nu_A(y) \lor \nu_A(y) = \nu_{A \cap B}(y).
\]
Hence $A \cap B \in \text{IFLI}(R)$. Similarly, we can easily see the rest.

(2) Let $x \in G$ and suppose $A \circ B(x) = (0, 1)$. Then there is nothing to show.

Suppose $A \circ B(x) \neq (0, 1)$. Then
\[
A \circ B(x) = (\bigvee_{x=yz} [\mu_A(y) \land \mu_B(z)], \bigwedge_{x=yz} [\nu_A(y) \lor \nu_B(z)]).
\]
Since $A \in \text{IFRI}(R)$ and $B \in \text{IFLI}(R),
\[
\mu_A(y) \leq \mu_A(yz) = \mu_A(x), \nu_A(y) \geq \nu_A(yz) = \nu_A(x)
\]
and
\[
\mu_B(z) \leq \mu_B(yz) = \mu_B(x), \nu_B(z) \geq \nu_B(yz) = \nu_B(x).
\]
Thus
\[
\mu_{A \circ B}(x) = \bigvee_{x=yz} [\mu_A(y) \land \mu_B(z)] \leq \mu_A(x) \land \mu_B(x) = \mu_{A \cap B}(x)
\]
and
\[
\nu_{A \circ B}(x) = \bigwedge_{x=yz} [\nu_A(y) \lor \nu_B(z)] \geq \nu_A(x) \lor \nu_B(x) = \nu_{A \cap B}(x).
\]
Hence $A \circ B \subset A \cap B$. This completes the proof. \qed
A ring R is said to be regular if for each $a \in R$ there exists an $x \in R$ such that \(a = axa \).

Result 2.2 (Burton [10, Theorem 9.4]). A ring R is regular if and only if $JM = J \cap M$ for each right ideal J and let ideal M of R.

Proposition 2.3. A ring R is regular if and only if for each $A \in \text{IFRI}(R)$ and each $B \in \text{IFLI}(R)$, $A \circ B = A \cap B$.

Proof. (\Rightarrow) Suppose R is regular. From Lemma 2.2, $A \circ B \subseteq A \cap B$. Thus it is sufficient to show that $A \cap B \subseteq A \circ B$. Let $a \in R$. Then, by the hypothesis, there exists an $x \in R$ such that $a = axa$. Thus

\[
\mu_A(a) = \mu_A(axa) \geq \mu_A(ax) \geq \mu_A(a)
\]

and

\[
\nu_A(a) = \nu_A(axa) \leq \nu_A(ax) \leq \nu_A(a).
\]

So $A(ax) = A(a)$. On the other hold,

\[
\mu_{A \circ B}(a) = \bigvee_{a=yz} [\mu_A(y) \wedge \mu_B(z)] \\
\geq \mu_A(ax) \wedge \mu_B(a) \\
= \mu_A(a) \wedge \mu_B(a) = \mu_{A \cap B}(a)
\]

(Since $a = axa$)

and

\[
\nu_{A \circ B}(a) = \bigwedge_{a=yz} [\nu_A(y) \vee \nu_B(z)] \leq \nu_A(ax) \vee \nu_B(a) \\
= \nu_A(a) \vee \nu_B(a) = \nu_{A \cap B}(a).
\]

Thus $A \cap B \subseteq A \circ B$. Hence $A \circ B = A \cap B$.

(\Leftarrow) Suppose the necessary condition holds. Let J and M be right and left ideals of R, respectively. Then, by Result 2.1,

\[
(\chi_J, \chi_J^c) \in \text{IFRI}(R) \quad \text{and} \quad (\chi_M, \chi_M^c) \in \text{IFLI}(R).
\]

Let $a \in J \cap M$ and let $A = (\chi_J, \chi_J^c)$, $B = (\chi_M, \chi_M^c)$. Then, by the hypothesis, $(A \circ B)(a) = (A \cap B)(a) = (1, 0)$. Thus

\[
\mu_{A \circ B}(a) = \bigvee_{a=a_1a_2} [\mu_A(a_1) \wedge \mu_B(a_2)] = \bigvee_{a=a_1a_2} [\chi_J(a_1) \wedge \chi_M(a_2)] = 1
\]
and
\[\nu_{A \circ B}(a) = \bigwedge_{a=a_1 a_2} [\nu_A(a_1) \lor \nu_B(a_2)] = \bigwedge_{a=a_1 a_2} [\chi_{J^c}(a_1) \lor \chi_{M^c}(a_2)] = 0. \]

So there exist \(b_1, b_2 \in R \) such that \(\chi_J(b_1) = 1, \chi_{J^c}(b_1) = 0 \) and \(\chi_M(b_2) = 1, \chi_{M^c}(b_2) = 0 \) with \(a = b_1 b_2 \). Thus \(a \in JM, \text{ i.e., } J \cap M \subset JM \). Since \(JM \subset J \cap M \), \(JM = J \cap M \). Hence, by Result 2.2, \(R \) is regular. This completes the proof. \(\blacksquare \)

3. INTUITIONISTIC FUZZY PRIME IDEALS

Definition 3.1. Let \(P \) be an IFI of a ring \(R \). Then \(P \) is said to be prime if \(P \) is not a constant mapping and for any \(A, B \in \text{IFI}(R) \), \(A \circ B \subset P \) implies either \(A \subset P \) or \(B \subset P \).

We will denote the set of all intuitionistic fuzzy prime ideals of \(R \) as \(\text{IFPI}(R) \).

Proposition 3.2. Let \(J \) be an ideal of a ring \(R \) such that \(J \neq R \). Then \(J \) is a prime ideal of \(R \) if and only if \((\chi_J, \chi_{J^c}) \in \text{IFI}(R) \).

Proof. \((\Rightarrow)\) Suppose \(J \) is a prime ideal of \(R \) and let \(P = (\chi_J, \chi_{J^c}) \). Since \(J \neq R \), \(P \) is not a constant mapping on \(R \). Assume that there exist \(A, B \in \text{IFI}(R) \) such that \(A \circ B \subset P \) and \(A \not\subset P \) and \(B \not\subset P \). Then there exist \(x, y \in R \) such that
\[\mu_A(x) > \mu_P(x) = \chi_J(x), \quad \nu_A(x) < \nu_P(x) = \chi_{J^c}(x) \]

and
\[\mu_B(y) > \mu_P(y) = \chi_J(y), \quad \nu_B(y) < \nu_P(y) = \chi_{J^c}(y). \]

Thus \(\mu_A(x) \neq 0 \), \(\nu_A(x) \neq 1 \) and \(\mu_B(y) \neq 0 \), \(\nu_B(y) \neq 1 \). But \(\chi_J(x) = 0 \) and \(\chi_J(y) = 0 \). So \(x \not\in J \) and \(y \not\in J \). Since \(J \) is a prime ideal of \(R \), by the process of the proof of Theorem 2 in Mukherjee & Sen [14], there exist an \(r \in R \) such that \(xry \notin J \). Let \(a = xry \). Then clearly, \(\chi_J(a) = 0 \) and \(\chi_{J^c}(a) = 1 \). Thus
\[A \circ B(a) = (0, 1). \quad (\ast) \]

On the other hand,
\[\mu_{A \circ B}(a) = \bigvee_{a=cd} [\mu_A(c) \land \mu_B(d)] \geq \mu_A(x) \land \mu_B(ry) \quad (\text{Since } a = xry) \]
\[= \mu_A(x) \land \mu_B(y) \quad (\text{Since } B \in \text{IFI}(R)) \]
\[> 0 \quad (\text{Since } \mu_A(x) \neq 0 \text{ and } \mu_B(y) \neq 0) \]
\[\nu_{A \circ B}(a) = \bigwedge_{a=cd} [\nu_A(c) \lor \nu_B(d)] \leq \nu_A(x) \lor \nu_B(\tau y) \leq \nu_A(x) \lor \nu_B(y) < 1. \]
(Since \(\nu_A(x) \neq 1 \) and \(\nu_B(y) \neq 1 \))

Then \(A \circ B(a) \neq 0 \). This contradicts (\(\ast \)). So \(P \) satisfies the second condition of Definition 3.1. Hence \(P = (\chi_J, \chi_{J^c}) \in \text{IFPI}(R) \).

(\(\Leftarrow \)) Suppose \(P = (\chi_J, \chi_{J^c}) \in \text{IFPI}(R) \). Since \(P \) is not a constant mapping on \(R \), \(J \neq R \). Let \(A \) and \(B \) be two ideals of \(R \) such that \(AB \subset J \). Let \(\tilde{A}, \tilde{B} \in \text{IFI}(R) \). Consider the product \(\tilde{A} \circ \tilde{B} \). Let \(x \in R \).

Suppose \(\tilde{A} \circ \tilde{B}(x) = (0, 1) \). Then clearly \(\tilde{A} \circ \tilde{B} \subset P \).

Suppose \(\tilde{A} \circ \tilde{B}(x) \neq (0, 1) \). Then

\[\mu_{\tilde{A} \circ \tilde{B}}(x) = \bigvee_{x=yz} [\chi_A(y) \land \chi_B(z)] \neq 0 \]

and

\[\nu_{\tilde{A} \circ \tilde{B}}(x) = \bigwedge_{x=yz} [\chi_{A^c}(y) \lor \chi_{B^c}(z)] \neq 1. \]

Thus there exist \(y, z \in R \) with \(x = yz \) such that

\[\chi_A(y) \neq 0, \chi_{A^c}(y) \neq 1 \text{ and } \chi_B(z) \neq 0, \chi_{B^c}(z) \neq 1. \]

So \(\chi_A(y) = 1, \chi_{A^c}(y) = 0 \) and \(\chi_B(z) = 1, \chi_{B^c}(z) = 0 \). This implies \(y \in A \) and \(z \in B \). Thus \(x = yz \in AB \subset J \). So \(\chi_J = 1 \) and \(\chi_{J^c}(x) = 0 \). It follows that \(\tilde{A} \circ \tilde{B} \subset P \). Since \(P \in \text{IFPI}(R) \), either \(\tilde{A} \subset P \) or \(\tilde{B} \subset P \). Thus either \(A \subset J \) or \(B \subset J \). Hence \(J \) is a prime ideal of \(R \). This completes the proof. \(\square \)

Proposition 3.3. Let \(P \) be an intuitionistic fuzzy prime ideals of a ring \(R \) and let \(R_P = \{ x \in R : P(x) = P(0) \} \). Then \(R_P \) is a prime ideal of \(R \).

Proof. Let \(x, y \in R_P \). Then \(P(x) = P(0) \) and \(P(y) = P(0) \). Thus

\[\mu_P(x-y) \geq \mu_P(x) \land \mu_P(y) = \mu_P(0) \]

and

\[\nu_P(x-y) \leq \nu_P(x) \lor \nu_P(y) = \nu_P(0). \]

Since \(P \in \text{IFI}(R) \),

\[\mu_P(0) = \mu_P(0(x-y)) \geq \mu_P(x-y) \]
and

\[\nu_P(0) = \nu_P(0(x - y)) \leq \nu_P(x - y). \]

So \(x - y \in R_P \). Now let \(r \in R \) and let \(x \in R_P \). Then

\[\mu_P(rx) \geq \mu_P(x) = \mu_P(0) \quad \text{and} \quad \nu_P(rx) \leq \nu_P(x) = \nu_P(0). \]

By Result 1.3, \(P(rx) = P(0) \). So \(rx \in R_P \). Similarly we have \(xr \in R_P \). Hence \(R_P \) is an ideal of \(R \). Let \(J \) and \(M \) be two ideals of \(R \) such that \(JM \subset R_P \). We define two complex mappings

\[A = (\mu_A, \nu_A) : R \to I \times I \quad \text{and} \quad B = (\mu_B, \nu_B) : R \to I \times I \quad \text{(resp.)} \]

by

\[A = P(0) (\chi_J, \chi_J^c) \quad \text{and} \quad B = P(0) (\chi_M, \chi_M^c), \quad \text{(resp.)} \]

where \(P(0) (\chi_J, \chi_J^c) = (\mu_P(0) \chi_J, \nu_P(0) \chi_J^c) \). Then we can easily prove that \(A, B \in \text{IFI}(R) \). Let \(x \in R \).

Suppose \(A \circ B(x) = (0, 1). \) Then \(A \circ B \subset P \).

Suppose \(A \circ B(x) \neq (0, 1). \) Then

\[\mu_{A \circ B}(x) = \bigvee_{x = yz} [\mu_A(y) \wedge \mu_B(z)] = \bigvee_{x = yz} [\mu_P(0) \chi_J(y) \wedge \mu_P(0) \chi_M(z)] \neq 0 \]

and

\[\nu_{A \circ B}(x) = \bigwedge_{x = yz} [\nu_A(y) \vee \nu_B(z)] = \bigwedge_{x = yz} [\nu_P(0) \chi_J^c(y) \vee \nu_P(0) \chi_M^c(z)] \neq 1. \]

Thus there exist \(y, z \in R \) with \(x = yz \) such that

\[\mu_P(0) \chi_J(y) \wedge \mu_P(0) \chi_M(z) \neq 0 \quad \text{and} \quad \nu_P(0) \chi_J^c(y) \vee \nu_P(0) \chi_M^c(z) \neq 1. \]

So \(\chi_J(y) = 1, \chi_J^c(y) = 0 \) and \(\chi_M(z) = 1, \chi_M^c(z) = 0. \) Thus \(y \in J \) and \(z \in M, \ i.e., \) \(x = yz \in JM \subset R_P \). So \(P(x) = P(0), \ i.e., \ A \circ B \subset P. \) Since \(P \in \text{IFPI}(R) \) and \(A, B \in \text{IFI}(R) \), either \(A \subset P \) or \(B \subset P \).

Suppose \(A \subset P. \) Then \(P(0)(\chi_J, \chi_J^c) \subset P. \) Assume that \(J \subset R_P. \) Then there exists an \(a \in J \) such that \(a \notin R_P. \) Thus \(P(a) \neq P(0). \) By Result 1.3, \(\mu_P(a) < \mu_P(0) \) and \(\nu_P(a) > \nu_P(0). \) Then

\[\mu_A(a) = \mu_P(0) \chi_J(a) = \mu_P(0) > \mu_P(a) \]

and

\[\nu_A(a) = \nu_P(0) \chi_J^c(a) = 0 < \nu_P(0) < \nu_P(a). \]
This contradicts the assumption that $A \subset P$. So $J \subset R_P$. By the similar arguments, we can show that if $B \subset P$, then $M \subset R_P$. Hence R_P is a prime ideal of R. This completes the proof. \hfill \Box

Remark 3.4. Let $P \in \text{IFI}(Z)$. Then, by Proposition 3.3, R_P is an ideal of Z. Hence there exists an integer $n \geq 0$ such that $R_P = nZ$.

Proposition 3.5. Let $P \in \text{IFI}(Z)$ with $R_P = nZ \neq (0)$. Then P can take at most r values, where r is the number of distinct positive divisors of n.

Proof. Let $a \in Z$ and let $d = (a, n)$. Then there exist $r, s \in Z$ such that $d = ar + ns$. Thus
\[
\mu_P(d) = \mu_P(ar + ns) \geq \mu_P(ar) \wedge \mu_P(ns) \geq \mu_P(a) \wedge \mu_P(n)
\]
and
\[
\nu_P(d) = \nu_P(ar + ns) \leq \nu_P(ar) \vee \nu_P(ns) \leq \nu_P(a) \vee \nu_P(n).
\]
Since $n \in R_P = nZ$, by Result 1.3,
\[
\mu_P(n) = \mu_P(0) \geq \mu_P(a) \text{ and } \nu_P(n) = \nu_P(0) \leq \nu_P(a).
\]
Thus $\mu_P(d) \geq \mu_P(a)$ and $\nu_P \leq \nu_P(a)$. Since d is a divisor of a, there exists a $t \in Z$ such that $a = dt$. Then
\[
\mu_P(a) = \mu_P(dt) \geq \mu_P(d) \text{ and } \nu_P(a) = \nu_P(dt) \leq \nu_P(d).
\]
So $P(a) = P(d)$. Moreover, by Result 1.3, $P(x) = P(-x)$ for each $x \in R$. Hence for each $a \in Z$ there exists a positive divisor d of n such that $P(a) = P(d)$. This completes the proof. \hfill \Box

The following result gives a complete characterization of intuitionistic fuzzy prime ideals of Z:

Theorem 3.6. Let $P \in \text{IFPI}(Z)$ with $Z_P \neq (0)$. Then P has two distinct values. Conversely, if $P \in \text{IFS}(Z)$ such that $P(n) = (\lambda_1, \mu_1)$ when $p \mid n$ and $P(n) = (\lambda_2, \mu_2)$ when $p \nmid n$, where p is a fixed prime, $\lambda_1 > \lambda_2$ and $\mu_1 < \mu_2$, then $P \in \text{IFPI}(Z)$ with $Z_P \neq (0)$.

Proof. Suppose $P \in \text{IFPI}(Z)$ with $Z_P = nZ \neq (0)$. Then, by Proposition 3.3, Z_P is a prime ideal of Z. Thus n is a prime integer. Since n has two distinct positive integers, by Proposition 3.5, P has at most two distinct values. On the other hand, an intuitionistic fuzzy prime ideals cannot be a constant mapping. Hence P has two distinct values.
Conversely, let P be an IFS in \mathbb{I} satisfying the given conditions. Let $a, b \in \mathbb{I}$.

(i) Suppose $p \mid (a - b)$. Then $P(a - b) = (\lambda_1, \mu_1)$. Thus

$$\lambda_1 = \mu_P(a - b) \geq \mu_P(a) \land \mu_P(b)$$

(Since $\lambda_1 > \lambda_2$)

and

$$\mu_1 = \nu_P(a - b) \leq \nu_P(a) \lor \nu_P(b).$$

(Since $\mu_1 < \mu_2$)

(ii) Suppose $p \nmid (a - b)$. Then $p \nmid a$ or $p \nmid b$. Thus either $P(a) = (\lambda_2, \mu_2)$ or $P(b) = (\lambda_2, \mu_2)$. So

$$\lambda_2 = \mu_P(a - b) \geq \mu_P(a) \land \mu_P(b) \quad \text{and} \quad \mu_2 = \nu_P(a - b) \leq \nu_P(a) \lor \nu_P(b).$$

(iii) Suppose $p \mid ab$. Then clearly $\mu_P(ab) \geq \mu_P(b)$ and $\nu_P(ab) \leq \nu_P(b)$.

(iv) Suppose $p \nmid ab$. Then $p \nmid a$ and $p \nmid b$. Thus

$$\mu_P(ab) \geq \mu_P(b) \quad \text{and} \quad \nu_P(ab) \leq \nu_P(b).$$

Consequently, by Result 1.3, $P \in \text{IFI}(\mathbb{I})$ with $\mathbb{I}_P = p\mathbb{I} \neq (0)$. Moreover, by the similar arguments of the proof of Proposition 3.2, we can see that $P \in \text{IFI}(\mathbb{I})$. This completes the proof.

\[\square\]

Proposition 3.7. Let R be a ring with 1. If every IFS of R has finite values, then R is a Noetherian ring.

Proof. Let $\{J_i\}_{i \in \mathbb{I}^+}$ be a sequence of ideals of R such that $J_1 \subset J_2 \subset J_3 \subset \cdots$ and let $J = \bigcup_{i \in \mathbb{I}^+} J_i$. Then clearly J is an ideal of R. We define a complex mapping $P = (\mu_P, \nu_P) : R \to I \times I$ as follows:

For each $x \in R$,

$$P(x) = \begin{cases}
(0, 1) & \text{if } x \notin J, \\
\left(\frac{1}{i_1}, 1 - \frac{1}{i_1}\right) & \text{if } x \in J,
\end{cases}$$

where $i_1 = \min\{i : x \in J_i\}$. Then it is clear that $P \in \text{IFI}(R)$ from the definition of P. Moreover, we can easily see that $P \in \text{IFI}(R)$. If the chain dose not terminate, then P takes infinitely many values. This contradicts the hypothesis. Thus the chain terminates. Hence R is a Noetherian ring. This completes the proof.

\[\square\]

Proposition 3.8. Let $A : \mathbb{I} \to I \times I$ be the complex mapping such that

(i) $A(x) = A(-x)$ for each $x \in \mathbb{I}$.

(ii) $\mu_A(x + y) \geq \mu_A(x) \land \mu_A(y)$ and $\nu_A(x + y) \leq \nu_A(x) \lor \nu_A(y)$ for any $x, y \in \mathbb{I}$.

If there exists a non-zero integer m such that $A(m) = A(0)$, then A can take at most finitely many values.
Proof. It is clear that $A \in \text{IFS}(Z)$ from the definition of A. Moreover, we can easily show that $A \in \text{IFI}(Z)$ such that $Z_A \neq (0)$. Hence, by Proposition 3.5, the mapping A can take at most finitely many values. \[\square\]

4. INTUITIONISTIC FUZZY COMPLETELY PRIME IDEALS

Definition 4.1. Let P be an IFI of a ring R and let $(\lambda, \mu) \in I \times I$ with $\lambda + \mu \leq 1$. Then P is called an intuitionistic fuzzy completely prime ideals (in short, IFCPI) of R if it satisfies the following conditions:

(i) P is not a constant mapping.
(ii) For any $x_{(\lambda, \mu)}, y(t,s) \in \text{IFP}(R), x_{(\lambda, \mu)} \circ y(t,s) \in P$ implies either $x_{(\lambda, \mu)} \in P$ or $y(t,s) \in P$.

We will denote the set of all IFCPIs of R as IFCPI(G).

Proposition 4.2.

1. Let R be a ring. Then IFCPI(R) \subseteq IFPI(R).
2. Let R be a commutative ring. Then IFPI(R) \subseteq IFCPI(R). Hence IFCPI(R) $=$ IFPI(R).

Proof. (1) Let $P \in$ IFCPI(R) and let $A, B \in$ IFI(R) such that $A \circ B \subseteq P$. Suppose $A \not\subseteq P$. Then, by Result 1.1, there exists an $x_{(\lambda, \mu)} \in \text{IFP}(R)$ such that $x_{(\lambda, \mu)} \in P$ but $x_{(\lambda, \mu)} \not\subseteq P$. Let $y(t,s) \in B$. Then, by Result 1.2 (1), $x_{(\lambda, \mu)} \circ y(t,s) = (xy)(\lambda \wedge t, \mu \vee s)$. On the other hand,

\[\mu_P(xy) \geq \mu_{A \circ B}(xy) \geq \mu_A(x) \wedge \mu_B(y) = \lambda \wedge t = \mu_{x_{(\lambda, \mu)}y(t,s)}(xy)\]

and

\[\nu_P(xy) \leq \nu_{A \circ B}(xy) \leq \nu_A(x) \vee \nu_B(y) = \mu \vee s = \nu_{x_{(\lambda, \mu)}y(t,s)}(xy).\]

Let $z \in R$ such that $x \neq xy$. Then clearly $[x_{(\lambda, \mu)} \circ y(t,s)](z) = (0,1)$. Thus $x_{(\lambda, \mu)} \circ y(t,s) \in P$. Since $P \in$ IFCPI(R), $x_{(\lambda, \mu)} \in P$ or $y(t,s) \in P$. Since $x_{(\lambda, \mu)} \not\subseteq P$, $y(t,s) \in P$. So, by Result 1.1, $B \subseteq P$. Hence $P \in$ IFPI(R).

(2) Let $P \in$ IFPI(R) and let $x_{(\lambda, \mu)}, y(t,s) \in \text{IFP}(R)$ such that $x_{(\lambda, \mu)} \circ y(t,s) \in P$. Then

\[\mu_{x_{(\lambda, \mu)}y(t,s)}(xy) \leq \mu_P(xy)\]

and

\[\nu_{x_{(\lambda, \mu)}y(t,s)}(xy) \geq \nu_P(xy).\]

Thus, by Result 1.2 (1),

\[\lambda \wedge t \leq \mu_P(xy)\]

and

\[\mu \vee s \geq \nu_P(xy).\]

(**)
We define two complex mappings

$$A = (\mu_A, \nu_A) : R \to I \times I$$ and $$B = (\mu_B, \nu_B) : R \to I \times I$$

as follows: For each $$z \in R,$$

$$A(z) = \begin{cases} (\lambda, \mu) & \text{if } z \in (x) \\ (0, 1) & \text{otherwise} \end{cases}$$ and $$B(z) = \begin{cases} (t, s) & \text{if } z \in (y) \\ (0, 1) & \text{otherwise} \end{cases}$$

where $$(x)$$ is the ideal generated by $$x.$$ Then clearly $$A, B \in \text{IFS}(R)$$ from the definitions of $$A$$ and $$B.$$ It is easily seen that if $$z$$ is not expressible in the form $$z = uv$$ for some $$u \in (x)$$ and $$v \in (y),$$ then $$A \circ B(z) = (0, 1).$$ Suppose there exist $$u \in (x)$$ and $$v \in (y)$$ such that $$z = uv.$$ Then

$$\mu_{A \circ B}(z) = \bigvee_{z = uv, u \in (x), v \in (y)} [\mu_A(u) \land \mu_B(v)] = \lambda \land t$$

and

$$\nu_{A \circ B}(z) = \bigwedge_{z = uv, u \in (x), v \in (y)} [\nu_A(u) \lor \nu_B(v)] = \mu \lor s.$$

Since $$R$$ is commutative and $$u \in (x),$$ there exist $$n \in \mathbb{Z}$$ and $$b \in R$$ such that $$u = nx + xb.$$ Since $$v \in (y),$$ there exist $$m \in \mathbb{Z}$$ and $$c \in R$$ such that $$v = my + yc.$$ Since $$R$$ is commutative, for some $$d \in R,$$

$$uv = (nx + xb)(my + yc) = xyd + mnx.$$

Then

$$\mu_P(uv) \geq \mu_P(xy) \quad \text{(Since } P \in \text{IFI}(R))$$

$$\geq \lambda \land t \quad \text{(By } (**))$$

and

$$\nu_P(uv) \leq \nu_P(xy) \leq \mu \lor s.$$

Thus $$z_{(\lambda \land t, \mu \lor s)} = u_{(\lambda, \mu)} \circ v_{(t, s)} \in P.$$ So, in all, $$A \circ B \subseteq P.$$ On the other hand, from the definitions of $$A$$ and $$B,$$ we can easily prove that $$A, B \in \text{IFI}(R).$$ Since $$P \in \text{IFPI}(R),$$ either $$A \subseteq P$$ or $$B \subseteq P.$$ Thus either $$x_{(\lambda, \mu)} \in P$$ or $$y_{(t, s)} \in P.$$ Hence $$P \in \text{IFCPI}(R).$$ This completes the proof.

Proposition 4.3. Let $$P$$ be a non-constant IFI of a ring $$R.$$

(1) If $$P$$ is an IFPI (resp. IFCPI) of $$R,$$ then

(i) $$R_P$$ is a prime ideal (resp. a completely prime ideal) of $$R.$$

(ii) $$\text{Im } P$$ consists of exactly two points of $$I \times I.$$
(2) If \(P(0) = (1, 0) \) and \(P \) satisfies the conditions (i) and (ii) above, then \(P \in \text{IFPI}(R) \) (resp. \(\text{IFCPI}(R) \)).

Proof. (1) We shall confine our proof to the case of intuitionistic fuzzy prime ideals. An analogous proof can be given by for intuitionistic fuzzy completely prime ideals. Suppose \(P \in \text{IFPI}(R) \). Then, by Proposition 3.3, \(R_P \) is a prime ideal of \(R \). Assume that \(\text{Im } P \) contains more than two values. Then there exist \(x, y \in R \setminus R_P \) such that \(P(x) \neq P(y) \). Suppose without loss of generality that \(\mu_P(x) < \mu_P(y) \) and \(\nu_P(x) > \nu_P(y) \). Since \(P \in \text{IFI}(R) \) and \(A(y) \neq A(0) \), by Result 1.3, \(\mu_P(x) < \mu_P(y) < \mu_P(0) \) and \(\nu_P(x) > \nu_P(y) > \nu_P(0) \). Let \((\lambda, \mu), (t, s) \in I \times I \) be chosen such that

\[
\mu_P(x) < \lambda < \mu_P(y) < t < \mu_P(0)
\]

and

\[
\nu_P(x) > \mu < \nu_P(y) > s > \nu_P(0). \quad (***)
\]

Let \((x)\) and \((y)\) denote respectively the ideals generated by \(x \) and \(y \). We define two complex mappings

\[
A = (\mu_A, \nu_A) : R \to I \times I \quad \text{and} \quad B = (\mu_B, \nu_B) : R \to I \times I \quad \text{(resp.)}
\]

as follows:

\[
A = (\lambda \chi(x), \mu \chi(x)c) \quad \text{and} \quad B = (t \chi(y), s \chi(y)c) \quad \text{(resp.)}.
\]

Then it is easily seen that \(A, B \in \text{IFI}(R) \) from the definitions of \(A \) and \(B \). Let \(z \in R \) which cannot be expressed in the form \(z = uv \) for \(u \in (x) \) and \(v \in (y) \). Then \(A \circ B(z) = (0, 1) \). Thus \(A \circ B \subset P \). Now let \(z \in R \). Suppose there exist \(u \in (x) \) and \(v \in (y) \) such that \(z = uv \) for some \(u \in (x) \) and \(v \in (y) \). Then

\[
\mu_{A \circ B}(z) = \bigvee_{z=uv, u \in (x), v \in (y)} [\mu_A(u) \land \mu_B(v)] = \lambda \land t = \lambda
\]

and

\[
\nu_{A \circ B}(z) = \bigwedge_{z=uv, u \in (x), v \in (y)} [\nu_A(u) \lor \nu_B(v)] = \mu \lor s = \mu.
\]

Since \(u \in (x) \), there exist \(m \in Z \) and \(r_i \in R \) \((i = 1, 2, 3, 4) \) such that \(u = mx + r_1 x + xr_2 + r_3 x r_4 \). Similarly, there exist \(n \in Z \) and \(s_i \in R \) \((i = 1, 2, 3, 4) \) such that \(v = ny + s_1 y + ys_2 + s_3 y s_4 \). Since \(P \in \text{IFI}(R) \), by Result 1.3,

\[
\mu_P(z) = \mu_P(uv) \geq \mu_P(x) \lor \mu_P(y) > \lambda
\]

and

\[
\nu_P(z) = \nu_P(uv) \leq \nu_P(x) \land \nu_P(y) < \mu.
\]
Thus $\mu_{A \circ B}(z) \leq \mu_P(z)$ and $\nu_{A \circ B}(z) \geq \nu_P(z)$ in this case also. So $A \circ B \subset P$. Since $P \in \text{IFPI}(R)$, either $A \subset P$ or $B \subset P$. Then either $\mu_A(x) = \lambda \leq \mu_P(x)$, $\nu_A(x) = \mu \geq \nu_P(x)$ or $\mu_B(y) = t \leq \mu_P(y)$, $\nu_B(y) = s \geq \nu_P(y)$. This contradicts (***). Hence $\text{Im} P$ consists of exactly two points of $I \times I$.

(2) Suppose $P(0) = (1,0)$ and P satisfies the conditions (i) and (ii). Then, by the similar arguments of proof of Proposition 3.2, we can see that $P \in \text{IFPI}(R)$. This completes the proof.

Corollary 4.3. Let P be an intuitionistic fuzzy completely prime ideal of a ring R. Then for any $x, y \in R$,

$$P(xy) = (\mu_P(x) \lor \mu_P(y), \nu_P(x) \land \nu_P(y)).$$

Remark 4.4. Proposition 4.3 generalizes Proposition 3.5.

Definition 4.5. Let A be a non-constant IFI of a ring R. Then A is called an intuitionistic fuzzy weakly completely prime ideal of R if for any $x, y \in R, A(xy) = (\mu_A(x) \lor \mu_A(y), \nu_A(x) \land \nu_A(y))$.

The following is the immediate result of Definitions 4.1 and 4.5.

Proposition 4.6. Let A be an intuitionistic fuzzy weakly completely prime ideal of a ring R. Then for each $(\lambda, \mu) \in I \times I$ with $\lambda + \mu \leq 1$, for each $(\lambda, \mu) \circ y_{(t,s)} \in A$ implies that either $x_{(\lambda,\mu)} \in A$ or $y_{(t,s)} \in A$. Furthermore, for each $(\lambda, \mu) \in I \times I$ such that $\lambda + \mu \leq 1, \lambda \leq \mu_A(0)$ and $\mu > \nu_A(0)$, $A_{(\lambda,\mu)}$ is a completely prime ideal of R. In particular, $A_{(0,1)}$ is a completely prime ideal of R.

Conversely if for each $(\lambda, \mu) \in I \times I$ with $\lambda + \mu \leq 1$, $A_{(\lambda,\mu)}$ is a completely prime ideal then A is an intuitionistic fuzzy weakly completely prime ideal.

The following is the example that an intuitionistic fuzzy weakly completely prime ideal need not be an intuitionistic fuzzy completely prime ideal.

Example 4.7. Let $R = \mathbb{Z} \times \mathbb{Z}$, let $S = \{0\} \times \mathbb{Z}$ and let $T = (2) \times \mathbb{Z}$. We define a complex mapping $A = (\mu_A, \nu_A) : R \rightarrow I \times I$ as follows: for each $x \in R$,

$$A(x) = \begin{cases} (1,0) & \text{if } x \in S, \\ (1/2, 1/3) & \text{if } x \in T \setminus S, \\ (0,1) & \text{if } x \in R \setminus T. \end{cases}$$
Then clearly $A \in \text{IFS}(\mathbb{R})$ from the definition of A. Moreover, we can easily show that A is an intuitionistic fuzzy weakly completely prime ideal but, by Proposition 4.2, A is not an intuitionistic fuzzy weakly completely prime ideal.

REFERENCES

(K. Hur) Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 344-2 Sinnyong-dong, Iksan, Jeonbuk 570-749, Korea
Email address: kulhur@wonkwang.ac.kr

(S. Y. Jang) Division of Mathematics and Informational Statistics, Institute of Basic Natural Science, Wonkwang University, 344-2 Sinnyong-dong, Iksan, Jeonbuk 570-749, Korea
Email address: suyoun123@yahoo.co.kr

(H. W. Kang) Department of Mathematics Education, Woosuk University, Hujong-Ri, Samrae-eup, Wanju-gun Chonbuk 565-701, Korea
Email address: khwon@woosuk.ac.kr