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LINEARLY INDEPENDENT ELEMENTS IN
N-GROUPS WITH FINITE GOLDIE DIMENSION

SATYANARAYANA BHAVANARI AND SYAM PRASAD KUNCHAM

ABSTRACT. The concepts linearly independent elements and u-linearly
independent elements in an N-group G where N is a near-ring, were
introduced and studied. A few important results in the theory of
vector spaces were generalized to N-groups.

0. Introduction

Throughout, by a near-ring, We mean a zero-symmetric right near-
ring. N stands for a near-ring and G stands for an N-group. (X) denotes
the ideal generated by X for a given subset X of G and (a) denotes {{a}).

The concept of finite Goldie dimension in N-groups was introduced
by Reddy and Satyanarayanal4]. An ideal H of G is said to have finite
Goldie dimension (FGD) if H does not contain an infinite number of
non-zero ideals of G whose sum is direct. An ideal A of G is said to be
essential in an ideal B of G (denote as, A <. B) if I is an ideal of G
contained in B and AN I = (0) imply I = (0). An ideal A of G is said
to be uniform if every non-zero ideal I of (G, which is contained in A, is
essential in A.

In [4], the authors proved that if an ideal H of G has FGD, then
there exist finite number of uniform ideals U;, 1 < ¢ < k of G whose sum
is direct and essential in H. This number % is independent of choice of
U;’s and k, is called the Goldie dimension of H. In this case, we write
k=dimH.

For preliminary definitions and results we refer 3, 4, 5, 7].
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DEFINITION 0.1. (Satyanarayanal6]):

(i) An ideal K of G is said to be N-simple if K contains no non-zero
proper N-subgroups;
(ii) an ideal H of G is said to be finite N-completely reducible if H can
be written as a sum of finite number of N-simple ideals of G;
(iii) an ideal K of G is said to be strictly mazimal if G/K is N-simple.

The intersection of all strictly maximal ideals of G is denoted by J(G).

Note 0.2. If I is an ideal of G, then I is N-simple = I is 51mple
= I is uniform.

Now a straightforward verification provides the following results.
RESULT 0.3. (a) Let U be an ideal of G. Then the following are
equivalent:
(i) U is uniform, and _
(i) 0#£zeUand 0#y U = (z)N(y) #(0).
(b) Suppose f : G — G is an isomorphism and I;,1 < i < n, are ideals
of G. Then

(i) the sum of ideals I;,1 < i < n of G is direct in G if and only if the
sum of ideals f(I;),1 < i < n of G! is direct in G!; and
(ii) I <, I if and only if f(Il) <e f(IQ).

Now we prove a preliminary lemma, which will be used in later sec-
tions.

LEMMA 0.4. Let f : G — G' be an epimorphism. Then for any
z € G, f((z)) = (f(z)).

Proof. Following the notation 0.1 given in [4], we have that

o0
= U A;, where A;;1 =AU A? U Ai+ for all >0,
=0
and
Al ={g+z—g|zecAgeG}
A’ ={a—-blabe A},
Al ={n(g+a)—ng|a€ A;;ne N,ge G} with Ay = {z}.
Also (f(z)) = U2, Bi, where B;y1 = Bf U B? U B;f with By = {f(z)}.
We verify that By = f(Ao),...,Bi = f(4;) for all 4 > 0. Now By =
{f(z)} = f(Ao). Suppose the induction hypothesis: By = f(Ax). Now
we have to verify that Bry1 = f(Akt+1)-
Part (i): Take y € Bry1 = Bf UBYU By
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Suppose y € Bf. Then y = g+ b— g for some b € By and g € GL.
Now b € Bi = f(Ar) = b = f(a) for some a € Ag. Since f is onto, there
exists g; € G such that f(g;) =¢g. Nowy=g+b—g= f(g1) + f(a) —
flg1) = flg1 +a—g1) € f(AF) C f(Ak+1). Therefore By C f(Akt1).
Similarly we can prove that Bg C f(Ag+1) and By C f(Agy1). Thus
Bk+1 - f(Ak-l—l)'

Part (i3): Let z € Af. Then z = g+ a — g for some a € A, g €
G = f(z) = flg+a—g) = flg) + f(a) — fg) € By (since f(a) €
f(Ag) = Byg). Therefore f(Af) € Bj. Similarly we can show that
f(AY) C BY, f(AL) € By

From the parts (i) and (ii), we have f(Ag41) = Bgt1-

By mathematical induction, we conclude that f(A;) = B; for all
i=1;2,.... Hence

(f(z))=|JBi = Uf(Ai) =f (U Ai) = f((z)- O

=0 =0

DEFINITIONS 0.5. (i) A subset S of G is said to be small in G if
S+ K =G and K is an ideal of G imply K = G; G is said to be hollow
if every proper ideal of G is small in G.

(ii) G is said to have finite spanning dimension (FSD) if for any
decreasing sequence of N-subgroups Xo D X3 D Xs... of G such that
X, is an ideal of X;_1, there exists an integer k such that X; is small in
G for all j > k.

1. Linearly independent elements and spanning sets

DEFINITION 1.1. Let X be a subset of G. X is said to be a linearly
independent(1i.) set if the sum >,y (@) is direct. If {a; | 1 <7 < n}
is a 1i. set, then we say that the elements a;,1 < i < n are linearly
independent. If X is not a Li. set, then we say that X is a linearly
dependent(1.d.) set.

DEFINITION 1.2. An element 0 # u € G is said to be uniform element
(u-element) if (u) is an uniform ideal of G.

The proof of the following remark is straightforward.

REMARK 1.3. Suppose GG has FGD. If H is a non-zero ideal of G,
then H contains a u-element.
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ResuLT 1.4. (i) If a;,1 <4 < m are l.i. elements in G then m < n
where n = dim G.

(ii) dim G is equal to the least upper bound of the set A where
A= {m | m is a positive integer such that ¢; € G,1 <i < m are l.i.}

(iii) If » = dimG and a;,1 < i < n are Li., then each (a;) is an
uniform ideal (in other words, each a; is a u-element).

Proof. (i) and (ii) follows from Corollary 2.5 and Theorem 2.4 of [4].

(iii) If (ax) is not uniform for some 1 < k < n, then (ax) contains two
non-zero ideals A and B such that ANB = (0). By the Remark 1.3, there
exist u-elements u € A and v € B. Now ay,a2,... 0k—1,%,V, Gg41,...,0n aT€
linearly independent, a contradiction. O

DEFINITION 1.5. If n = dimG and a;,1 < ¢ < n are li., then
{a; | 1 <i < n}is called an essential basis for G. ‘

A straightforward verification gives the following note.

NoOTE 1.6. (i) G has FGD <> li. subset X of G is a finite set.
(i) Suppose that dimG =n and X C G. If X is a Li. set, then we
have: |X| =n & X is a maximal Li. set & X is an essential basis for G.

LEMMA 1.7. Let f : G — G* be an isomorphism and z; € G, 1 <
i < k. Then

(i) z1,22,...,xx are Li. elements in G & f(x1), f(x2),..., f(zx) are
Li. elements in GY;
(ii) u € G is a u-element in G < f(u) is a u-element in G*.
(iii) z1,z2,...,x are u-Li. elements in G & f(x1), f(z2),..., f(zk) are
u-Li. elements in G.

Proof. (i) Follows from Result 0.3 and Lemma 0.4 (ii) In a contrary
way, suppose that (f(u)) is not uniform. Take wy,ws € {f(u)) such that
(w1) N {(w2) = (0). By the Lemma 0.4, there exist ui,us € (u) such
that wy = f(u1),ws = f(u2). Since w;,ws are linearly independent, by
Lemma 1.7, uj up are linearly independent, which imply that u cannot
be a u-element. The rest follows similarly. B

Now we generalize the concept essentially spanned given in [1] to
N-groups.
DEFINITION 1.8. Let H be an ideal of G and X C H. We say that
H is
(i) essentially spanned by a collection of ideals {Is},ca of G (or
{Io}aen spans H essentially) if 3 A Io is essential in H;
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(ii) spanned by a collection of ideals {Ia},ca Of G (or {Is},ecn SPans
H)if Yy Io = H;

(iil) essentially spanned by X (or X spans H essentially or X is an
essentially spanning set for H) if > () is essential in H;

(iv) spanned by X (or X spans H or X is a spanning set for H) if

erX <w> =H.

NoTE 1.9. (i) {Ia}cp sPans H = {Io},ca spans H essentially and
the converse is not true; _
(ii) X spans H = X spans H essentially and the converse is not true.

ExaMPLES 1.10. Let N = Z, the near-ring of integers and G = Z,
the additive group of integers. Now G is an N-group.

(i) Consider I = 2Z. Clearly the ideal I is essential in G. Therefore I
spans G essentially. Since I # G, we have that I do not spans G.

(ii) Write X = {2}. Clearly > .x(z) =2Z = I is essential in G. So
X spans G essentially. Since ) .y (%) # G, we have that X do
not spans G.

DEFINITION 1.11. Let H be an ideal of G. (a) H is said to be

(1) finitely spanned ideal if it has a finite spanning set;

(ii) H is said to be finitely essentially spanned ideal if it has a finite
essential spanning set; '

(b) If X = {z} and X essentially spans H, then H is called essentially
cyclic ideal.

NoTE 1.12. If U is a uniform ideal, then U is an essentially cyclic
ideal. Every essentially cyclic ideal need not be uniform.

For example, write N = Z, the near-ring of integers; and G = Zg the
group of integers modulo 6. Now G is an N-group. Since G = (1), G is
essentially cyclic N-group, which is not uniform.

REesuLT 1.13. Suppose @ is semi-simple N-group with FGD. Then

(i) there exist simple ideals Hy, Ho, ..., H, such that H1 & Ho & --- ®
H, =G,; and

(ii) there exist uniform ideals U;,1 < ¢ < n such that G =U; @ U, &
e @ U,

Proof. In a contrary way, suppose that G' cannot be expressed as a
sum of finite number of simple ideals. Let H; be a simple ideal. Clearly
Hi # G. Then there exists a simple ideal Hs such that H; # Hy. Now
H; N Hy = (0) and so Hy + Hj is a direct sum. Since H; + Hy # G,
there exists a simple ideal H3 of G such that Hy + Hy + Hs # H1 + Hos.
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If H3 N (H; + Hy) # (0), then Hs C Hy + Hy (since Hj is simple) =
Hi+Hy+ Hs = Hi+Hs, a contradiction. Therefore H3N(Hy+Ha) = (0)
and so the sum H; + Hy + Hj is direct. Now Hy + Ho + Hs # G. If we
continue this process up to infinite steps, we get an infinite chain H; C
Hi®Hy C HH®Hy® H3 C - - - such that for each m, Hy & Hy @ --® Hp,
is not essential in H; & Ha--- ® Hy, ® Hpq1, a contradiction, since G
has FGD. Hence there exists n such that G = Hi ® Ho & --- & H,.

(ii) Follows form (i) and Note 0.2 O

2. u-linearly independent elements

DEFINITIONS 2.1. A subset X of G is said to be u-linearly indepen-
dent(u-l.i.) set if every element of X is a u-element and X is a L.i. set.
Elements a; € G,1 < 4 < n are said to be u-li. if {a; |1 <i<n}isa
u-li. set. A u-li. set X is said to be a mazimal u-1.i. set if X U {b} is
a u-linearly dependent set for each uniform element 0 # b € G\ X.

RESULT 2.2. Suppose n = dim G and a;,1 < ¢ < n are Li. elements.
Then
(i) ai,1 <i < n are u-li. elements;
(i) {a; | 1 €4 < n} forms an essential basis for G; and
(iii) the conditions (i) and (ii) are equivalent.

Proof.

(i) Follows from Result 1.4 (iii);
(i) Follows from (i); and
(iii) Clear. O

RESULT 2.3. Suppose G has FGD. Then
(i) If b;,1 < ¢ < k are l.i. elements then there exist u-elements a; €
(b;),1 <14 < k such that a;,1 <4 < k are u-li. elements;
(i) If H is a non-zero ideal of G then there exists a u-l.i. set X =
{ai| 1 <i < k} such that (X) = @F_ (a;) <. H.
Moreover dim H = k.

Proof. (i) Follows from Remark 1.3.
(i) Clear. O

THEOREM 2.4. (i) If G has FSD, then there exist u-l.i elements
ui, 1 < i < m in G/J(G) which spans G/J(G). Moreover G/J(G) can
be written as a direct sum of finite number of uniform ideals;

(ii) If G has FSD, then G/J(G) has FGD.
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Proof. By the Lemma 1.3 of Satyanarayana(7], G/J(G) is finite N-
completely reducible. This means there exist N-simple ideals K1, K>, .. .,
Ky, of G/J(G) such that G/J(G) = K1 @ Ko ® --- ® K. Let 0 #
u; € K;,1 < ¢ < m. Now by Note 0.2, each u; is a u-element. Since
(0) # {u;) C K; and K; is simple, we have that (u;) = K; for 1 <i <m.
So G/J(G) = (u1) @ (ua) ® - -+ & (um).

(ii) Follows from (i). O

THEOREM 2.5. Suppose G has FGD. Then K is a complement ideal
of G if and only if there exist u-Li. elements u; + K, uo + K, ..., um+ K
in G/K which spans G/K essentially with m = dimG — dim K.

Proof. Suppose that K is a complement ideal of G. Since K is a
complement, by Result 1.6 of (7], dim(G/K) = dimG — dim K. So
dim(G/K) = m. Hence by the Theorem 2.4 of [4], G/K contains m
uniform ideals whose sum is direct and essential in G/K. We select one
and only one non-zero element from each of these uniform ideals. Sup-
pose these elements are u; + K,1 <i <m. Now u; + K,1 < ¢ <m are
Li. and {(u1 + K) @ --- & {(um + K) is essential in G/K.

Conversely suppose that there exist u-l.i elements v1 + K, ..., um + K
in G/K which spans G/K essentially. Then (u; +K)®- @ (um+K) <.
G/K. This shows that dim(G/K) = m. Therefore dim(G/K) = m =
dim G—dim K. Now by Result 1.6 of [7], K is complement ideal of G. [

THEOREM 2.6. Suppose G has FGD and dimG = n, k < n. If
u1,us, ..., ug are u-Li elements of G, then there exist ug41,...,Un in G
such that uy,us,.. ., Uk, Uk+1, - - -, Un SPan G essentially.

Proof. Given that u;,1 < i < k are u-li. elements. Write H =
(u1) ® -+ ® (ug). Now dimH = k. Since dimH = k < n = dimG,
by Corollary 2.5 of [4], we have that H is not essential in G. Since H
is not essential in G, there exists a non-zero ideal H' of G such that
HN H' = (0). By Zorn’s Lemma, B = {I| I is a non-zero ideal of G
such that HNT = (0)} contains a maximal element, say J. By Result 1.4
of [6], H® J is an essential ideal in G. Now n = dimG =dim(H& J) =
dim H + dim J = k + dim J. This implies that dimJ = n — k. Since
dim J = n — k, there exist u-1.i. elements v1,vs,...,v,—% in J such that
the sum of (v;),1 <1i < n—k is direct and essential in J. Since HNJ =
(0), by Corollary 2.3 of [4] we have that (u1)®- - -®(uk)B{v1)PD- - - B{Vp—k)
is essential in (G. This shows that ui,ue,...,ug,v1,- .., Up—g are u-li.
elements which span G essentially. O

THEOREM 2.7. If G has FGD, then the following are equivalent:
(i) dim G = n;



440 Satyanarayana Bhavanari and Syam Prasad Kuncham

(ii) There exist n uniform ideals U;,1 < i < n, whose sum is direct
and essential in G;

(iii) The maximum number of u-Li. elements in G is 7;

(iv) n is maximum with respect to the property that for any given
{z1,z2,..., 2%} of u-li. elements with k < n, there exist zx41,.. .,
zp, such that {x1,29,...,2n} are u-Li. elements;

(v) The maximum number of Li. elements that can span G essentially
isn;

(vi) The minimum number of u-li. elements that can span G essen-
tially is n.

Proof. (i) < (ii): Follows from 2.4 of [4].
(i) = (iii): Follows from the Result 1.4.
(iii) = (ii): Is a routine verification.
(i) = (iv): Follows from the Theorem 2.5 and the Result 1.4.
(iv) = (iii): Clear.
(i) & (v): Follows from the Result 1.4.
(i) = (vi): In a contrary way, suppose that there exist u-Li. elements
u;,1 < i < k, and k < n such that u;,1 < ¢ < k span G essentially.
This means (u1)®---® (un) <. G. By the Theorem 2.5, there exist u-1.i

elements ug41, ..., %y such that uy,us,...,uy are u-li. elements. This
implies ({u1) ® -+ - ® (uk)) N ((uk+1)) = (0).

Since (u1) @ - -+ ® (ug) <. G, we have that (ug41) = (0) = ug41 =0,
a contradiction.
(vi) = (ii): Clear. O
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