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SCALAR EXTENSION OF SCHUR ALGEBRAS

EunmMi CHol

ABSTRACT. Let K be an algebraic number field. If k is the maxi-
mal cyclotomic subextension in K then the Schur K-group S(K) is
obtained from the Schur k-group S(k) by scalar extension. In the
paper we study projective Schur group PS(K) which is a generaliza-
tion of Schur group, and prove that a projective Schur K-algebra is
obtained by scalar extension of a projective Schur k-algebra where
k is the maximal radical extension in K with mild condition.

1. Introduction

Let K be a field. A finite dimensional central simple K-algebra is
a Brauer algebra. A Brauer K-algebra A is a projective Schur algebra
if there is a finite group G and a 2-cocycle a € Z2?(G, K*) such that
A is a homomorphic image of the twisted group algebra KG¢, where
K* = K — {0} is regarded as a G-module with respect to the trivial G-
action. The similarity class containing a Brauer K-algebra A is denoted
by [A], and they form a Brauer group B(K). The projective Schur group
PS(K) is a subgroup of B(K) consisting of similarity classes which are
represented by projective Schur K-algebras (refer to [1,4]). When a = 1,
the projective Schur K-algebra A is called a Schur K-algebra, and the
set of [A]’s forms the Schur group S(K). If characteristic of K is positive
then S(K) is trivial.

Assume that K is an algebraic number field (i.e., a finite extension
of the rational field Q) with algebraic closure E. Let Q(u) denote the
maximal cyclotomic extension of QQ contained in E, where u is the group
of all roots of unity in E. Let £ = Q(p) N K and K ®; S(k) be the
subgroup of B(K) obtained from S(k) by extension of scalars. Then
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K ®j, S(k) is contained in S(K), and it was proved in [9, (4.6)] that
S(K) = K ®; S(k) = {[K @ A] | [4] € S(k)}.

We may refer to [5, Theorem 3.4], and [7] over ring K of algebraic
integers.

The purpose of this paper is to study situations that a projective
Schur K-algebra is obtained from a projective Schur k-algebra by scalar
extensions where k is a subfield of K. Upon using projective characters,
we recast the definition of projective Schur algebra in Theorem 7, and
prove that if K is an algebraic number field and k is a maximal radical
extension field of Q contained in K with mild conditions then a projec-
tive Schur K-algebra A can be written as A = K ®; A’ for a projective
Schur k-algebra A’ in Theorem 8. Moreover we construct a subgroup
PSp(K) of PS(K) with F C K such that PSp(K) = K ® PSr(k) for
some subfield k£ of K in Theorem 12. As an application to a special class
of algebras, radical algebra was discussed in Theorem 13.

In what follows, we mean that K* is the multiplicative subgroup of
a field K, ¢, is a primitive n-th root of unity for n > 0 and p is the set
of roots of unity. For a finite group G, |G| is the order of G and o(g) is
the order of g € G. We denote by Q the rational number field, and by
Z(A) the center algebra of an algebra A.

2. Projective group character

We always assume that K is a field of characteristic 0 with an al-
gebraic closure F, and G is a finite group of exponent n. Let p be
an irreducible E-representation of G, and x be the E-character of G
afforded by p. Then '

(1) e(x) = X2 > x(g™Ng

Gl &
is a block idempotent of the group algebra EG (see [9, (1.1)] or [3,
Vol.1(19.2.7)]). Moreover e(x) is a block idempotent of K(e,)G, be-
cause all values of x are contained in K(g,). And the Galois group
Gal(K (e,)/K) acts on the set of idempotents

{e(x) | x irreducible E-characters of G}

by 7-e(x) = e(x"), where x"(g) = 7(x(g)) for all 7 € Gal(K(ep)/K)
and g € G.
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Let K(x) denote the subfield of E generated by K and the character
values x(g) for all g € G. Since x(g) is a sum of o(g)-th roots of unity
over K, K(x) = K(g4) where dln. And the block idempotent v(x) of
KG such that e() is a summand of v(x) forms (see [3, Vol.3(14.1.14)])

(2) v(x) = Z e(x”) (the e(x™) are all distinct).
reGal(K(x)/K)

We shall denote the simple component A of KG corresponding to x
by KGu(x). Then A is central over K if and only if K = K(x) ([9,
(1.4)]). Hence in this case, Gal(K(x)/K) = 1, e(x) = v(x) and A is
isomorphic to KGe(x). Thus the definition of Schur algebra can be
stated as follow.

DEeFINITION 1. (3, Vol.3, p.819] Let K be a field of characteristic 0
and E be an algebraic closure of K. Then a central simple algebra A
is a Schur K-algebra if and only if there is a finite group G and an
irreducible E-character x of G such that K = K(x) and A & KGe(x)

where e(x) is as in (1).

In [9, (4.6)], the equality S(K) = K ®xS(k) was proved by employing
Brauer-Witt theorem which states that every Schur K-algebra is similar
to a cyclotomic algebra. Though there is a radical algebra which is an
analog of cyclotomic algebra in projective Schur algebra theory, only
projective Schur division algebra is a radical algebra ([1]). Hence in
next theorem we will prove the identity S(K) = K ®x S(k) by making
use of group characters, so that the similar method will be extended to
projective Schur algebra case.

THEOREM 2. Let K be an algebraic number field and k be the maxi-
mal cyclotomic extension field contained in K. Then S(K) = K & S(k).

Proof. Let [S] € S(K). Then there is a Schur algebra A € [S] such
that
A= KGe(x) (as K-algebras) and K = K(x),

for a finite group G, an irreducible E-character x of G, and the block
idempotent e(x) of EG as in (1).

Let A’ be the simple component of kG corresponding to x, and k(x)
be the extension field adjoining all values of x to k. Then k& C k(x) C
E. Since e(x) belongs to k(x)G, v'(x) = X cGalk(x)k €X7)  (the
e(x™) are all distinct) is a block idempotent of kG (see (2)). Thus
A = kG (x).

All x(g) (9 € G) are contained in K(x) N Q(u) = K N Q(y), where
1 is the set of primitive roots of unity in E. But since K N Q(u) is a
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cyclotomic extension of Q in K, we have K N Q(u) C k and x(g) € k
for all g € G. Thus k(x) =k, v'(x) = e(x) and A’ is a central simple k-
algebra such that A’ = kGe(x). Hence we have [S] = [A] = [KGe(x)] =
[K ® kGe(x)] = K ® [A'] € K ® S(k). O

- Throughout the paper we always assume that K is a field of charac-
teristic 0 and F is an algebraic closure of K. Let a be a 2-cocycle in
Z%(G,K*) with a(z,1) = a(1,z) = 1 for all z,y € G, and {az|z € G} be
a basis of the twisted group algebra KG* satisfying azay = a(z, y)acy.
We denote by p an irreducible projective a-representation of G over E
and by x, the a-character afforded by p.

THEOREM 3. Let K, E and x, be defined as above. Then there is a
finite Galois radical extension F' over K in E containing K(xo). That
is, F = K(Q), where Q is a Gal(F/K)-invariant subgroup of F* such
that QK*/K* is finite, and K(xa) C F.

Proof. For any g € G, let

o(g)
(3) A = H a(g',g) e K
i=1

and let d4 in E be any o(g)-th root of A,. Let 2, be the subset
Qo = (1, {0 g € G}) € E,

where p is the set of |G|-th root of unity in E. Then K C K(Q,) C E,
and 2, K™ is torsion over K*. And since d4 is a root of the polynomial
X9 -\, € K[X], any automorphism on K (Q,) maps 8, to another root
of X°9) — )\, that belongs to Q4. Thus Q4 is Gal(K(Q,)/K )-invariant,
and K(€),) is a finite Galois radical extension field of K. Moreover since
Xa(g) is a sum of &, ([3, Vol.3(1.2.6)]), it follows that x,(g) belongs to
K(9,), hence K(x,4) is a subfield of K(£2,). O

Maintaining the above notations, we get next corollary.

COROLLARY 4. Let a € Z%(G, K*) be of finite order o(c). Then
K(xq) is a subfield of a cyclotomic extension field over K in E.

Proof. For g € G, we use the same notations Ay € K and §;, € E
as in Theorem 3. Let p be the irreducible a-representation of G over E
affording xq-

Consider any positive multiple n = o(g)s with some s > 0. Let

X, = [Ii=; o(g', g) and let &, be an n-th root of X, in E. Then p(g)" =
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ralgt g)plgh) = AgI, where I is the identity matrix, and
o(g) s
H o6'9) = | [T ots" g) = (0g)* = (59) = (8,)".
Since o(a) is finite, if we consider n = o(g)o(a) then
o(9) @ o)
[[adh9)] =[] 9 =1,
i=1 i=1

and we may choose d, as an n-root of unity. Thus K(xo) is contained
in a cyclotomic subfield of E. O

Since the algebraic closure F is a splitting field for EG?,

Za ga a(g—l)a’g

geG

(4) e a - |GI

is a block idempotent of EG® associated with x4 ([3, Vol.3(1.11.1)]). IfT
is a finite dimensional K-algebra and V is a I'-module then ¥ = EQT
and VF = E ®; V are E-algebra and I'®-module respectively. And any
block idempotent v of T is a central idempotent of I'¥. Thus v can be

written uniquely as a sum of distinct block idempotents e of I'F ([3,
Vol.3(7.1.1)]).

THEOREM 5. For a € Z%(G,K*), let xo be the irreducible o-
character of G over E afforded by an irreducible a-representation p
of G. Let e(Xq) be the block idempotent of EG® as in (4), and v(xq) be
the block idempotent of KG* such that e(x,) is a summand of v(xq)-
Then, as K-algebras,

KG%(xa) = p(KG®) and K(xa) = Z(p(KG?)).

Proof. When e(xq) is a summand of v(x,), we shall write e(xq) C
v(xqa). Let U be a simple EG*-module corresponding to x, and V be
a simple K G®-module such that U is an irreducible constituent of VE.
Let Q4 be the subset of E* consisting of the set p of |G|-th roots of unity

in E and the set {Jy|g € G}, where d, is an o(g)-th root of []; (gl) a(g, g)
(see (3)). Then K(,) is a finite Galois radical extension field of K
containing K (xo) (Theorem 3).



458 Eunmi Choi

Clearly the block idempotent

a = Z o g,9 Xa (g 1)a9
|G|
9€G
of EG* belongs to K(xa)G*. And the Galois group Gal(K(Qq)/K) =
G acts on the twisted group algebra K(Qa)G* by 7 -3 ccTgaq =
>_gec T(@g)ag for 7 € G and z4 € K(Qq). Thus if we consider X7, = 7Xa
then x7, is an a-character of G over E corresponding to the EG*-module

U™. Since Te(xq) = |ac§|1 > ogec @ Yg, 7 )x% (g7 ay = e (X7), we have

o (Z e(xl)) =Y oe(xn) =D e(xd) = e(xz)

TEG TEG TEG TEG

for all 0 € G, thus ) .- e(x7) is contained in KG°.

We notice however that Zreg e(x7,) may not be a block idempotent
in KG?, because some of idempotents e(x?) might appear more than
- once in the summation. We now let

(5) v(xa) = Y e(xa),

where the sum runs over 7 € G such that e(x7,) are all distinct. And we
may generously assume that e(xa) C v(Xxa)- Let o be any element in G.
Since 7 runs over G where e(x7,) are all distinct in the summation v(xq),
so does o7 and e(x%") are all distinct. Hence o(v(xa)) = 3 e(x3")
is the sum of all distinct idempotents of EG®, so is equal to v(xq)
for all 0 € G. Thus v(x,) is a block idempotent in KG* associated
with Xxo. We note that e(xa) C v(Xa) C e(Xa) + >_reg—g, €(Xa) Where
Go = Gal(K(Q4)/K(Xa))-

For the a-representation p on G, the mapping on EFG® defined by
Yoxgag — Y xgp(g) (g € E) is a homomorphism of E-algebras. We
shall use the same notation p for the homomorphism on EG®. Since U
is a simple EG®*-module corresponding to X, €(Xxqa) acts as identity and
the other block idempotents must annihilate U. Thus

p(v(xa)) =1 and p(KG%v(xa)) = p(KG®).

Hence p induces a surjective homomorphism of KG*v(xq) onto p(KG?).
But since KG®v(x, ) is simple, p is one to one and KG*v(xqa) = p(KG?).

And the second statement K (xq) & Z(p(KG?*)) follows immediately
from Theorem 7.3.8 (iii) in (3, Vol.3]. O
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COROLLARY 6. Let the context be the same as in Theorem 5. Let A
be a simple component of KG“ corresponding to xo. Then A is central
over K if and only if K = K(xa)-

Proof. The simple component A of KG? is isomorphic to KG*v(xa)
with a block idempotent v(xo) of KG*. Thus A is central over K if and
only if K = Z(A) =2 Z(KG*v(xa)) = K(Xo) by Theorem 5. O

We are now able to recast the definition of projective Schur algebra
in the following form.

THEOREM 7. An algebra A is a projective Schur K-algebra if and
only if there exists a finite group G, a 2-cocycle o € Z?*(G,K*) and
an irreducible a-character xo of G over E such that K = K(x,) and
A = KG%e(xq), where e(xq) is as in (4).

Proof. Let A be a projective Schur K-algebra. Then A is a central
simple K-algebra that is a homomorphic image of KG® for a finite group
G and a 2-cocycle a € Z2(G, K*).

Let v be a block idempotent of KG® such that A = KG%v. Since
v is a sum of distinct block idempotents of EG*, we may let e be a
block idempotent of EG® which is a summand of v. Let x, be the
irreducible a-character of G over F associated with e. Then we can write
e = e(Xa) = (Xa(1)/IG]) Xgec @ (9,97 )Xal97)ag. By considering
the fields K C K(xa) C K(Q4) C E as in Theorem 3 and by letting G =
Gal(K(Qq)/K), without loss of generality we may write v = v(xq) =
> e(x7,) which is the sum of distinct e(x7) for 7 € G as in (5).

Since A = KG%v(Xq) is central, we have K = K(xq) due to Corol-
lary 6. And since e(xq) C v(xa) C e(xa) + D e(x%) where the sum
ranges over 7 € Gal(K(Qa)/K) — Gal(K(Q4)/K(xa)) by the proof of
Theorem 5, it follows that e(xa) = v(Xa), 50 A = KG*V(Xq) is isomor-
phic to KG%e(xq). The other direction is easy to see. O

3. Projective Schur algebra over a field

A K-algebra T is said to be definable over a subfield L of K if I is
isomorphic to K@V = I'"¥ for some L-algebra I". It is known that KG
is definable over Q if charK = 0, and KG* is definable over a subfield
L of K if L contains the values of o € Z%(G, K*) [3, Vol.3(7.1.1)]. For a
simple I'-module V, VZ need not be a semisimple I'?-module. However
if I' is definable over a perfect subfield of K (or if K itself is perfect)
then VF is semisimple ([3, Vol.3(7.1.3)]).
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THEOREM 8. Let K be an algebraic number field and A be a pro-
jective Schur K-algebra which is an image of KG® for a finite group G
and a € Z%(G,K*). Let M, be a subfield of K containing the values of
«a. Then for the maximal radical extension field k of M, in K, there is
a projective Schur k-algebra A’ such that A~ K ®; A’.

Proof. Let xo be the a-character of G over an algebraic closure E
that corresponds to the simple KG®-algebra A. Let Qo = (1, {dg4lg €
G}) be the subset of E*, where p is the set of |G|-th root of unity in

an = o' g‘, g) (see Theorem 3). en there is a tower o
E and 629 = 1?9 o(g° Th 3). Then th f

i=1

fields K C K(xa) C K(Q2,) C E, and by Theorem 7 we are able to write
A= KG%(xa) and K(xa) = K,

where e(xa) = (Xa(1)/IG]) X4ec a"Yg,97Dxalgay is the block
idempotent of EG* (see (4)).

Consider two extension fields k(xo) and k(Qa) of k adjoined by the
values of x, and the set 0, to k respectively. Then k£ C k(xq) C
k(Q,) C E, and k(£,) is a finite radical Galois extension of k£ because
53(9) = Hfigl) a(gt,g) € My C k. We denote Gal(k(Qq)/k) by G'.

Obviously KG® is definable over & since all values of o are in My C k.
Thus KG* = K Q1 kG®, where the K-basis a, of KG* is also considered
as a k-basis of kG*, and the block idempotent e(xs) of EG* belongs to
k(xa)G* C k(Q4)G". .

Let A’ be the simple component of kG* corresponding to xo. Due
to Theorem 5, v'(xo) = Y., e(x5) where 7 runs over G’ such that all
e(x7,) are distinct is a block idempotent of kG* associated with xq.
Here we may assume e(xq) C v'(Xo). And the simple component A’
is isomorphic to kG*v'(xq). We are now enough to show that A’ is a
projective Schur k-algebra satisfying A = K ®; A'.

Clearly K N k() is a radical extension of k contained in K, thus
K N k() is also radical over M, because k is radical over M, (see (2,
(3.10.1)]). But since k is a maximal radical extension of M, in K, it
follows that £ C K Nk(xa) € K Nk(Q) C k, and they are all same.

Every value of x4 is contained in K, for K = K(xq). And xa(g) €
k(xa) for all g € G. Thus x(9) € K Nk(xa) =k, so k = k(xa). Hence
by making use of Corollary 6, A’ is a central simple k-algebra.

Since e(xq) belongs to k(xa)G* = kG*, every 7 € G’ = Gal(k(Q4)/k)
leaves e(xq) fixed, so v'(Xa) = €(Xa). Thus the simple algebra A’ =
kG*v'(xq) is isomorphic to kG%e(xa), hence A’ is a projective Schur
k-algebra due to Theorem 7. Therefore our required situation follows
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immediately that
A= KG%(xa) = K ®r kG%(xa) 2 K @1 A'. O

Without loss of generality we may assume that M, is the smallest
subfield of K containing all values of . We showed that a projective
Schur K-algebra can be obtained by K-scalar extension of a projective
Schur k-algebra where k is a certain subfield of K. This observation will
be clear if we assume the following case.

COROLLARY 9. Let A be a projective Schur K-algebra which is a
homomorphic image of KG*. With the same context in Theorem 8,
let M,(Q2y) be the extension. field of M, adjoining the set Qq. If k =
K N My(Qy), then A is a K-scalar extension of a projective Schur k-
algebra.

Proof. Due to Theorem 7, we may write A = KG%(xq) and K =
K(xa)- Since values of a are contained in both K and My, KG* is
definable over k so that KG* = K Qi kG“*.

From k(xo) = K(xa) V" Ma(Q) = KNMy(Q0) =k, e(Xa) € EG® is
contained in kG® and is left fixed by all 7 € Gal(k(€,)/k). Hence the
block idempotent v'(xq) in kG which is a sum of distinct e(x})’s for
T € Gal(k(Qq)/k) is equal to e(xq). Thus the central simple k-algebra
A’ = kEG*V'(xo) associated with x4 is isomorphic to kG%e(x.), and it
follows that A & KG%(xq) = K ®k kG%e(xa) = K &1 A'. O

In Corollary 9, if @ = 1 then k = K N My(Q40) equals K N Q(u),
which is the same field chosen in Theorem 2 for Schur algebra. The-
orem 8 provides a partial analog of Theorem 2 that A = K ®; A’ for
[4] € PS(K) and [A’] € PS(k). However it does not imply the equality
PS(K) = K ® PS(k), even it is not true. For instance, if K is an alge-
braic number field then PS(K) is the whole Brauer group B(K) due to
[4], hence the equality would mean that every element in B(K) comes
from B(Q), which is not correct.

"THEOREM 10. Let K, E, o € Z%(G,K*), X« and v(xqa) be the same
as in Theorem 8. Let A =2 KG%*v(x.) be a simple component of KG*
corresponding to xo. If B € Z2(G, K*) is cohomologous to a (denote it
by a ~ () then there is an irreducible 3-character xg of G over E such
that K(xq) = K(xg) and v(xa) = v(Xg), so the simple component B of
KGP corresponding to X Is isomorphic to A, as K-algebras.

Proof. Let p be an irreducible a-representation of G over E which
affords xo. Let B(g,z) = a(g, z)t(g)t(z)t~(gz) with a map t : G — K*
(t(1) = 1) for g,z € G. Then it is easy to see that p’ and xg defined by
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P'(9) = t(9)p(g) and xs(g) = t(9)xa(g) are irreducible B-representation
and [-character of G respectively, and p’ affords xg. Since xs(g) =
t(9)xa(9) € K(Xxa), K(xs) € K(xa) and they are equal. Moreover
since

o(g) o(g)

115" 9) Ha (9", 9)t(g")t(g)t  (g"!) = Ag - ()" for g € G,
=1

where ); is in (3), we may take o(g)-th root dj, of H ,B(g g) as
8¢ - t(g), where dg o9 — = Ag. Hence

K(Qs) = K ({1, {0519 € G})) = K ((n, {dglg € G})) = K(Q),
so we shall denote it by K(Q2) = K(Qa) = K(Qp).
Let {a4| g € G} be a K-basis of KG®. Then by = t(g)a, forms a
basis of KGP, and KG* & KGP as K-algebras under a; — t~1(g)b,

(9 € G). Moreover the block idempotent e(x ) of EGP is equal to e(xs)
of EG®, because

e(xs)
Xlﬂ“ > 67007 xalg ™Yy
gEG
:t“ OIS~ 070,67 (07 (g7 tag ™ e xals™ gDy
geG
lGl g;,.a (9,97 )xalg™ ) ag = e(xa),

thus v(xg) the sum of distinct e(x3) for 7 € Gal(K(Q)/K) is equal to
v(Xa). Hence it follows immediately that the simple component B of
KGP corresponding to xp is isomorphic to KGAv(xp) = KG*(xa) &
A. O

Let A be a projective Schur K-algebra. Then due to Theorem 7,
A= KG%(xa) and K(xo) = K with a € Z%(G, K*) and an irreducible
a-character x, of a finite group G. If we consider 8 € Z2(G, K*) such
that a ~ 8 then A is isomorphic to a simple algebra B = KG# e(xp) for
some irreducible 3-character xg due to Theorem 10. Furthermore since
K(xg) = K(xa) = K, B is a projective Schur K-algebra. Now applying
Theorem 8 to both A and B, there exists a projective Schur k,-algebra
A’ and a projective Schur kg-algebra B’ such that

K®kaA/gA = BgK®kﬁB/,
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where My, [resp. Mjp] is the (smallest) subfield of K containing all values
of a [resp. f], and kq [resp. kg] is the maximal radical extension of M,
[resp. Mg contained in K. We observe that though K(xa) = K(x3)
and K(Q,) = K(fg), it is not necessarily M, and Mg, and k, and kg
are same respectively.

THEOREM 11. Let K be an algebraic number field, and A and B
be any projective Schur K-algebras. Then there exist a subfield k of K
and projective Schur k-algebras Ay and By such that A = K Q Ay and
B = K ®; By.

Proof. Let A and B be homomorphic images of KG* and KH”
respectively where G and H are finite groups, o € Z2(G,K*) and 3 €
Z*(H,K*). Due to Theorem 8 there are M, [resp. Mg] which is the
smallest subfield of K containing all values of a [resp. f], and k,
[resp. kg] which is the maximal radical extension of M, [resp. Mpg| in
K, satisfying

AgK®kaAl and BgK®kﬁB,,

where A’ and B’ are projective Schur k., and kg-algebras respectively.

Let F be a subfield of K containing the values of both & and 3. And
let k£ be the maximal radical extension of F' in K. Obviously M, C F
and Mg C F.

It is easy to see that k, and kg are contained in k. In fact, since k, is
a radical extension of My, we may write ko, = My (Ay) with a subset A,
of k% such that A, MZ/MZ is torsion. Clearly My, C F C k. Moreover
if x € Ay then 2™ € M, C F for some m > 0, thus £F™ is of finite
order in K*/F*. Due to the maximality of k£ in K, we have z € k and
Aq C Kk, thus kg C k. Similarly we have kg C k.

Now since both KG® and K H? are definable over k, we have KG* =
K Qi kG* and KH? = K ® kHS. And by applying Theorem 8 to F
and its maximal radical extension k£ in K, we can conclude that there
exist projective Schur k-algebras Ag and By such that A 2 K @ Ag and
B = K ® Bp. U

Theorem 11 motivates to construct a subset PSg(K) of PS(K) for
a subfield F of K: let F C K and let PSp(K) be the set of similar
classes [S] of K-algebras where [S] contains a projective Schur K-algebra
that is an image of KG“ definable over F' for some finite group G and
a € Z%G,K*).

Obviously, PSr(K) is a subgroup of PS(K) for, let [S;] € PSr(K) be
with A; € [S;] (i = 1, 2) where A, is an image of KG}* and KG7" is defin-
able over F'. Then A; ® Agz is represented by K(G1 X G2)***2 where
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a1 X og is defined by oq x az2((g1,92), (z1,22)) = a1(g1, z1)a2(g2, T2)
for g;,z; € G; (i = 1,2). Moreover K(G1 X G2)**°2 is definable over
F because K(G1 X G2)a1xa2 = K'G(f‘1 K Kng = (K RF FGCIH) QK
(K RF FGSQ) = K Qp (FG?I RF Fng) = K Qp F(G1 X G2)a1><a2_
Thus A; @k Az € [S1][S2] and [S1][S2] € PSp(K). In particular if o
has values in F then so does oy X as.

Let [S] be any element in PSp(K) and A € [S] be an image of KG*
for some a € Z2(G,K*). Then there is an irreducible a-character xq
such that K = K(xq) and A =2 KG%¢e(xqa) by Theorem 7, where e(xq) is
as in (4). We note that since KG® is definable over F, it is also definable
over the maximal radical extension field k£ of F in K. Moreover due to
Theorem 8, A = K Qi kG%(x,). But since [kG%(x.)] € PSr(k),
[A] = K ® [kG™e(xq)] belongs to K @k PSp(k).

Hence the following theorem is straightforward.

THEOREM 12. Let K be an algebraic number field and F C K. Then
PSp(K) is a subgroup of PS(K) and PSp(K) = K ® PSr(k) for the
maximal radical extension field k of F' in K.

As an application to a special class -of projective Schur algebras, we
consider the radical (abelian) algebra ({1]) which is a crossed product
algebra (L/K,a') where L = K () is a radical (abelian) G-Galois exten-
sion of K (that is, Q is a G = Gal(L/K)-invariant subgroup of L* (i.e.,
a(2) € Q for any o € G) such that QK*/K* is a torsion group), and
o € Z*(G, L*) is the image of some o € Z%(G,§?) under the inclusion
Q < L*. The radical algebra is an analogue of the cyclotomic algebra
in the context of projective Schur algebra, and every projective Schur
division algebra is itself a radical abelian algebra. The set of similarity
classes of radical K-algebra forms a radical group Rad(K) which is a
subgroup of PS(K).

THEOREM 13. Let k be a maximal radical extension of Q contained
in a field K. Then for any [S] € Rad(K), [S]" is a K-scalar extension
of an element in Rad(k) for some h > 0.

Proof. Let A = (K(Q)/K, a') be aradical K-algebra contained in [S].
Then [A] = [S], K(9) is a radical G-Galois extension of K with G =
Gal(K (Q)/K), and o € Z%(G,K(R)*) is the image of a € Z%(G, Q).
And for any ¢ € G and w € 2, w" € K* for some integer n > 0 and
o(w) belongs to 2. Now let

Qo ={we Q" ek* for some n > 0}.
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Then Qg < §, Qok*/k* is a torsion group and k({Yp) is a radical extension
of k. Since k is the maximal radical extension contained in K, we have
KN k(Qo) = k. '

Consider the field extensions K C K () € K(Q) and £ C k(£) C
k(Q). Let w be any element in ). Then v € k* C K, and o(w)" =
ow") = w" € k* (e, a(Q) C Q) for any o € AutgK (). Let
z be any element in K({)) — K. Then z € K(Q2) — K and there is
7 € AutgK(Q) such that 7(z) # z, for K(Q)/K is Galois. Denote
TIk(o) by 70 If we write any element y € K () by ¥y = > aiw;
with a; € K, w; € Qp then 7o(y) = 7(y) = 3 aim(wi) € K(Qp). This
shows that 7y can be regarded as an element in Autx K (£)o) satisfying
10(z) = 7(z) # x. Therefore K () is a radical Go-Galois extension of
K where Gy = Gal(K(Qp)/K).

Since Gal(K(Qp)/K) = Gal(k(ﬂo)/(K N k() = Gal(k(0)/k),
k(£) is also Go-Galois radical over k; we shall denote Gal(k(€20)/k) by
the same notation Go. If we write H = Gal(K(Q)/K(Qp)) then G/H is
isomorphic to Gy.

From A = (K(Q)/K,d'), let T, be the group extension of §2 by G

a: 1—>Q—>Fai>G—>1,

which corresponds to o € Z%(G,Q). Then A = K(T',) as a K-vector
space.
Consider the homomorphism [8, (5.3.2)]

vosem @ HA(G,Q) — HA(G/H,aM),

defined in the following manner. Let j~1(H) = W and let W, be the
commutator subgroup of W. Then there is a group extension

e : 1> W/W,—To/W,—G/H -1

having a factor set o in Z?(G/H,W/W,). Denote by A the reduced
group theoretical transfer map W/W, — OH,

The A is a G/H-homomorphism and induces a homomorphism of co-
homology groups A : H2(G/H,W/W,) — H*(G/H, Q). Then vg_,g/u
is defined by vg_g/u (@) = A(@c), where & € H?(G, Q) is the cohomol-
ogy class of a. It can be seen that vg_,q/p is a homomorphism. And
we denote vg_.g /(@) by B € H*(G/H,QM).

We observe Q1 = Q. In fact if w € QF then w € Q is fixed by all
elements in H = Gal(K(Q)/K(£g)), so w € Q. Conversely if w €
then w € QNK () is fixed by H. Hence we may regard 3 as an element
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in Z2(Go, ), and we have a group extension I'g of Qy by Gp :
B:1-0Qy—-Tg—Gy— 1

If let 8’ € Z2(Go, k(Qp)*) be an image of 3 under the inclusion Qy —
k(2)* and let B = (k(Q)/k,3’) be the crossed product algebra then
B = k(I'p) is a radical k-algebra, so [B] € Rad(k).

In connection with the inflation map H?(Go, Q) = H%(G/H,QH) inf
H?(G, ), the composition map (inf- vg_,g/p) on H 2(G, ) defines

alfl = (inf - vG—c/u)(@) = inf(B)

8, (5.3.3)]. Hence inff3 is cohomologous to olfl. Thus due to [6, (29,13),
(29,16)], we have the following isomorphisms of crossed product algebras:

K ®[B] = K ® [(k()/k, )]
= [(K()/K,8))
= [(K (Q)/K, infﬂ’)]
= [(K(Q)/K, o]
= [(K(@)/K,o)]™
= [A]H]
= [S]IHI, 0

In particular when |H| =1 (i.e.,, K(2) = K(p)), a radical K-algebra
can be extended from a radical k-algebra where k is the maximal radical
extension in K.
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