SCALAR EXTENSION OF SCHUR ALGEBRAS

EUNMI CHOI

ABSTRACT. Let K be an algebraic number field. If k is the maximal cyclotomic subextension in K then the Schur K-group S(K) is obtained from the Schur k-group S(k) by scalar extension. In the paper we study projective Schur group PS(K) which is a generalization of Schur group, and prove that a projective Schur K-algebra is obtained by scalar extension of a projective Schur k-algebra where k is the maximal radical extension in K with mild condition.

1. Introduction

Let K be a field. A finite dimensional central simple K-algebra is a Brauer algebra. A Brauer K-algebra A is a projective Schur algebra if there is a finite group G and a 2-cocycle $\alpha \in Z^2(G, K^*)$ such that A is a homomorphic image of the twisted group algebra KG^{α} , where $K^* = K - \{0\}$ is regarded as a G-module with respect to the trivial G-action. The similarity class containing a Brauer K-algebra A is denoted by [A], and they form a Brauer group B(K). The projective Schur group PS(K) is a subgroup of B(K) consisting of similarity classes which are represented by projective Schur K-algebras (refer to [1,4]). When $\alpha=1$, the projective Schur K-algebra A is called a Schur K-algebra, and the set of [A]'s forms the Schur group S(K). If characteristic of K is positive then S(K) is trivial.

Assume that K is an algebraic number field (i.e., a finite extension of the rational field \mathbb{Q}) with algebraic closure E. Let $\mathbb{Q}(\mu)$ denote the maximal cyclotomic extension of \mathbb{Q} contained in E, where μ is the group of all roots of unity in E. Let $k = \mathbb{Q}(\mu) \cap K$ and $K \otimes_k S(k)$ be the subgroup of B(K) obtained from S(k) by extension of scalars. Then

Received February 4, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 16H05, 16S34, 20C25.

Key words and phrases: Schur algebra, projective Schur algebra, projective character.

 $K \otimes_k S(k)$ is contained in S(K), and it was proved in [9, (4.6)] that

$$S(K) = K \otimes_k S(k) = \{ [K \otimes_k A] \mid [A] \in S(k) \}.$$

We may refer to [5, Theorem 3.4], and [7] over ring K of algebraic integers.

The purpose of this paper is to study situations that a projective Schur K-algebra is obtained from a projective Schur k-algebra by scalar extensions where k is a subfield of K. Upon using projective characters, we recast the definition of projective Schur algebra in Theorem 7, and prove that if K is an algebraic number field and k is a maximal radical extension field of $\mathbb Q$ contained in K with mild conditions then a projective Schur K-algebra A can be written as $A \cong K \otimes_k A'$ for a projective Schur k-algebra A' in Theorem 8. Moreover we construct a subgroup $PS_F(K)$ of PS(K) with $F \subset K$ such that $PS_F(K) = K \otimes_k PS_F(k)$ for some subfield k of K in Theorem 12. As an application to a special class of algebras, radical algebra was discussed in Theorem 13.

In what follows, we mean that K^* is the multiplicative subgroup of a field K, ε_n is a primitive n-th root of unity for n > 0 and μ is the set of roots of unity. For a finite group G, |G| is the order of G and o(g) is the order of $g \in G$. We denote by \mathbb{Q} the rational number field, and by Z(A) the center algebra of an algebra A.

2. Projective group character

We always assume that K is a field of characteristic 0 with an algebraic closure E, and G is a finite group of exponent n. Let ρ be an irreducible E-representation of G, and χ be the E-character of G afforded by ρ . Then

(1)
$$e(\chi) = \frac{\chi(1)}{|G|} \sum_{g \in G} \chi(g^{-1})g$$

is a block idempotent of the group algebra EG (see [9, (1.1)] or [3, Vol.1(19.2.7)]). Moreover $e(\chi)$ is a block idempotent of $K(\varepsilon_n)G$, because all values of χ are contained in $K(\varepsilon_n)$. And the Galois group $\operatorname{Gal}(K(\varepsilon_n)/K)$ acts on the set of idempotents

$$\{e(\chi) \mid \chi \text{ irreducible } E\text{-characters of } G\}$$

by $\tau \cdot e(\chi) = e(\chi^{\tau})$, where $\chi^{\tau}(g) = \tau(\chi(g))$ for all $\tau \in \operatorname{Gal}(K(\varepsilon_n)/K)$ and $g \in G$.

Let $K(\chi)$ denote the subfield of E generated by K and the character values $\chi(g)$ for all $g \in G$. Since $\chi(g)$ is a sum of o(g)-th roots of unity over K, $K(\chi) = K(\varepsilon_d)$ where d|n. And the block idempotent $v(\chi)$ of KG such that $e(\chi)$ is a summand of $v(\chi)$ forms (see [3, Vol.3(14.1.14)])

(2)
$$v(\chi) = \sum_{\tau \in \operatorname{Gal}(K(\chi)/K)} e(\chi^{\tau})$$
 (the $e(\chi^{\tau})$ are all distinct).

We shall denote the simple component A of KG corresponding to χ by $KGv(\chi)$. Then A is central over K if and only if $K = K(\chi)$ ([9, (1.4)]). Hence in this case, $Gal(K(\chi)/K) = 1$, $e(\chi) = v(\chi)$ and A is isomorphic to $KGe(\chi)$. Thus the definition of Schur algebra can be stated as follow.

DEFINITION 1. [3, Vol.3, p.819] Let K be a field of characteristic 0 and E be an algebraic closure of K. Then a central simple algebra A is a Schur K-algebra if and only if there is a finite group G and an irreducible E-character χ of G such that $K = K(\chi)$ and $A \cong KGe(\chi)$ where $e(\chi)$ is as in (1).

In [9, (4.6)], the equality $S(K) = K \otimes_k S(k)$ was proved by employing Brauer-Witt theorem which states that every Schur K-algebra is similar to a cyclotomic algebra. Though there is a radical algebra which is an analog of cyclotomic algebra in projective Schur algebra theory, only projective Schur division algebra is a radical algebra ([1]). Hence in next theorem we will prove the identity $S(K) = K \otimes_k S(k)$ by making use of group characters, so that the similar method will be extended to projective Schur algebra case.

THEOREM 2. Let K be an algebraic number field and k be the maximal cyclotomic extension field contained in K. Then $S(K) = K \otimes_k S(k)$.

Proof. Let $[S] \in S(K)$. Then there is a Schur algebra $A \in [S]$ such that

$$A \cong KGe(\chi)$$
 (as K-algebras) and $K = K(\chi)$,

for a finite group G, an irreducible E-character χ of G, and the block idempotent $e(\chi)$ of EG as in (1).

Let A' be the simple component of kG corresponding to χ , and $k(\chi)$ be the extension field adjoining all values of χ to k. Then $k \subseteq k(\chi) \subseteq E$. Since $e(\chi)$ belongs to $k(\chi)G$, $v'(\chi) = \sum_{\tau \in \operatorname{Gal}(k(\chi)/k)} e(\chi^{\tau})$ (the $e(\chi^{\tau})$ are all distinct) is a block idempotent of kG (see (2)). Thus $A' \cong kGv'(\chi)$.

All $\chi(g)$ $(g \in G)$ are contained in $K(\chi) \cap \mathbb{Q}(\mu) = K \cap \mathbb{Q}(\mu)$, where μ is the set of primitive roots of unity in E. But since $K \cap \mathbb{Q}(\mu)$ is a

cyclotomic extension of \mathbb{Q} in K, we have $K \cap \mathbb{Q}(\mu) \subseteq k$ and $\chi(g) \in k$ for all $g \in G$. Thus $k(\chi) = k$, $v'(\chi) = e(\chi)$ and A' is a central simple k-algebra such that $A' \cong kGe(\chi)$. Hence we have $[S] = [A] = [KGe(\chi)] = [K \otimes_k kGe(\chi)] = K \otimes_k [A'] \in K \otimes_k S(k)$.

Throughout the paper we always assume that K is a field of characteristic 0 and E is an algebraic closure of K. Let α be a 2-cocycle in $Z^2(G, K^*)$ with $\alpha(x, 1) = \alpha(1, x) = 1$ for all $x, y \in G$, and $\{a_x | x \in G\}$ be a basis of the twisted group algebra KG^{α} satisfying $a_x a_y = \alpha(x, y) a_{xy}$. We denote by ρ an irreducible projective α -representation of G over E and by χ_{α} the α -character afforded by ρ .

THEOREM 3. Let K, E and χ_{α} be defined as above. Then there is a finite Galois radical extension F over K in E containing $K(\chi_{\alpha})$. That is, $F = K(\Omega)$, where Ω is a Gal(F/K)-invariant subgroup of F^* such that $\Omega K^*/K^*$ is finite, and $K(\chi_{\alpha}) \subseteq F$.

Proof. For any $q \in G$, let

(3)
$$\lambda_g = \prod_{i=1}^{o(g)} \alpha(g^i, g) \in K$$

and let δ_g in E be any o(g)-th root of λ_g . Let Ω_α be the subset

$$\Omega_{\alpha} = \langle \mu, \{ \delta_g | g \in G \} \rangle \subseteq E^*,$$

where μ is the set of |G|-th root of unity in E. Then $K \subseteq K(\Omega_{\alpha}) \subseteq E$, and $\Omega_{\alpha}K^*$ is torsion over K^* . And since δ_g is a root of the polynomial $X^{o(g)} - \lambda_g \in K[X]$, any automorphism on $K(\Omega_{\alpha})$ maps δ_g to another root of $X^{o(g)} - \lambda_g$ that belongs to Ω_{α} . Thus Ω_{α} is $\operatorname{Gal}(K(\Omega_{\alpha})/K)$ -invariant, and $K(\Omega_{\alpha})$ is a finite Galois radical extension field of K. Moreover since $\chi_{\alpha}(g)$ is a sum of δ_g ([3, Vol.3(1.2.6)]), it follows that $\chi_{\alpha}(g)$ belongs to $K(\Omega_{\alpha})$, hence $K(\chi_{\alpha})$ is a subfield of $K(\Omega_{\alpha})$.

Maintaining the above notations, we get next corollary.

COROLLARY 4. Let $\alpha \in Z^2(G, K^*)$ be of finite order $o(\alpha)$. Then $K(\chi_{\alpha})$ is a subfield of a cyclotomic extension field over K in E.

Proof. For $g \in G$, we use the same notations $\lambda_g \in K$ and $\delta_g \in E$ as in Theorem 3. Let ρ be the irreducible α -representation of G over E affording χ_{α} .

Consider any positive multiple n=o(g)s with some s>0. Let $\lambda_q'=\prod_{i=1}^n\alpha(g^i,g)$ and let δ_q' be an n-th root of λ_q' in E. Then $\rho(g)^n=0$

 $\prod_{i=1}^n \alpha(g^i,g) \rho(g^n) = \lambda_g' I,$ where I is the identity matrix, and

$$(\delta_g')^n = \lambda_g' = \prod_{i=1}^n \alpha(g^i, g) = \left(\prod_{i=1}^{o(g)} \alpha(g^i, g)\right)^s = (\lambda_g)^s = \left(\delta_g^{o(g)}\right)^s = (\delta_g)^n.$$

Since $o(\alpha)$ is finite, if we consider $n = o(g)o(\alpha)$ then

$$(\delta_g)^n = \left(\prod_{i=1}^{o(g)} \alpha(g^i, g)\right)^{o(\alpha)} = \prod_{i=1}^{o(g)} \alpha^{o(\alpha)}(g^i, g) = 1,$$

and we may choose δ_g as an *n*-root of unity. Thus $K(\chi_\alpha)$ is contained in a cyclotomic subfield of E.

Since the algebraic closure E is a splitting field for EG^{α} ,

(4)
$$e(\chi_{\alpha}) = \frac{\chi_{\alpha}(1)}{|G|} \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) a_g$$

is a block idempotent of EG^{α} associated with χ_{α} ([3, Vol.3(1.11.1)]). If Γ is a finite dimensional K-algebra and V is a Γ -module then $\Gamma^{E} = E \otimes_{k} \Gamma$ and $V^{E} = E \otimes_{k} V$ are E-algebra and Γ^{E} -module respectively. And any block idempotent v of Γ is a central idempotent of Γ^{E} . Thus v can be written uniquely as a sum of distinct block idempotents e of Γ^{E} ([3, Vol.3(7.1.1)]).

THEOREM 5. For $\alpha \in Z^2(G, K^*)$, let χ_{α} be the irreducible α -character of G over E afforded by an irreducible α -representation ρ of G. Let $e(\chi_{\alpha})$ be the block idempotent of EG^{α} as in (4), and $v(\chi_{\alpha})$ be the block idempotent of KG^{α} such that $e(\chi_{\alpha})$ is a summand of $v(\chi_{\alpha})$. Then, as K-algebras,

$$KG^{\alpha}v(\chi_{\alpha}) \cong \rho(KG^{\alpha})$$
 and $K(\chi_{\alpha}) \cong Z(\rho(KG^{\alpha}))$.

Proof. When $e(\chi_{\alpha})$ is a summand of $v(\chi_{\alpha})$, we shall write $e(\chi_{\alpha}) \subset v(\chi_{\alpha})$. Let U be a simple EG^{α} -module corresponding to χ_{α} and V be a simple KG^{α} -module such that U is an irreducible constituent of V^{E} . Let Ω_{α} be the subset of E^{*} consisting of the set μ of |G|-th roots of unity in E and the set $\{\delta_{g}|g\in G\}$, where δ_{g} is an o(g)-th root of $\prod_{i=1}^{o(g)}\alpha(g^{i},g)$ (see (3)). Then $K(\Omega_{\alpha})$ is a finite Galois radical extension field of K containing $K(\chi_{\alpha})$ (Theorem 3).

Clearly the block idempotent

$$e(\chi_{\alpha}) = \frac{\chi_{\alpha}(1)}{|G|} \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) a_g$$

of EG^{α} belongs to $K(\chi_{\alpha})G^{\alpha}$. And the Galois group $\operatorname{Gal}(K(\Omega_{\alpha})/K) = \mathcal{G}$ acts on the twisted group algebra $K(\Omega_{\alpha})G^{\alpha}$ by $\tau \cdot \sum_{g \in G} x_g a_g = \sum_{g \in G} \tau(x_g) a_g$ for $\tau \in \mathcal{G}$ and $x_g \in K(\Omega_{\alpha})$. Thus if we consider $\chi_{\alpha}^{\tau} = \tau \chi_{\alpha}$ then χ_{α}^{τ} is an α -character of G over E corresponding to the EG^{α} -module U^{τ} . Since $\tau e(\chi_{\alpha}) = \frac{\chi_{\alpha}(1)}{|G|} \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}^{\tau}(g^{-1}) a_g = e(\chi_{\alpha}^{\tau})$, we have

$$\sigma\left(\sum_{\tau\in\mathcal{G}}e(\chi_{\alpha}^{\tau})\right)=\sum_{\tau\in\mathcal{G}}\sigma e(\chi_{\alpha}^{\tau})=\sum_{\tau\in\mathcal{G}}e(\chi_{\alpha}^{\sigma\tau})=\sum_{\tau\in\mathcal{G}}e(\chi_{\alpha}^{\tau})$$

for all $\sigma \in \mathcal{G}$, thus $\sum_{\tau \in \mathcal{G}} e(\chi_{\alpha}^{\tau})$ is contained in KG^{α} .

We notice however that $\sum_{\tau \in \mathcal{G}} e(\chi_{\alpha}^{\tau})$ may not be a block idempotent in KG^{α} , because some of idempotents $e(\chi_{\alpha}^{\tau})$ might appear more than once in the summation. We now let

$$(5) v(\chi_{\alpha}) = \sum e(\chi_{\alpha}^{\tau}),$$

where the sum runs over $\tau \in \mathcal{G}$ such that $e(\chi_{\alpha}^{\tau})$ are all distinct. And we may generously assume that $e(\chi_{\alpha}) \subset v(\chi_{\alpha})$. Let σ be any element in \mathcal{G} . Since τ runs over \mathcal{G} where $e(\chi_{\alpha}^{\tau})$ are all distinct in the summation $v(\chi_{\alpha})$, so does $\sigma\tau$ and $e(\chi_{\alpha}^{\sigma\tau})$ are all distinct. Hence $\sigma(v(\chi_{\alpha})) = \sum e(\chi_{\alpha}^{\sigma\tau})$ is the sum of all distinct idempotents of EG^{α} , so is equal to $v(\chi_{\alpha})$ for all $\sigma \in \mathcal{G}$. Thus $v(\chi_{\alpha})$ is a block idempotent in KG^{α} associated with χ_{α} . We note that $e(\chi_{\alpha}) \subset v(\chi_{\alpha}) \subset e(\chi_{\alpha}) + \sum_{\tau \in \mathcal{G} - \mathcal{G}_0} e(\chi_{\alpha}^{\tau})$ where $\mathcal{G}_0 = \operatorname{Gal}(K(\Omega_{\alpha})/K(\chi_{\alpha}))$.

For the α -representation ρ on G, the mapping on EG^{α} defined by $\sum x_g a_g \mapsto \sum x_g \rho(g)$ $(x_g \in E)$ is a homomorphism of E-algebras. We shall use the same notation ρ for the homomorphism on EG^{α} . Since U is a simple EG^{α} -module corresponding to χ_{α} , $e(\chi_{\alpha})$ acts as identity and the other block idempotents must annihilate U. Thus

$$\rho(v(\chi_{\alpha})) = 1 \text{ and } \rho(KG^{\alpha}v(\chi_{\alpha})) = \rho(KG^{\alpha}).$$

Hence ρ induces a surjective homomorphism of $KG^{\alpha}v(\chi_{\alpha})$ onto $\rho(KG^{\alpha})$. But since $KG^{\alpha}v(\chi_{\alpha})$ is simple, ρ is one to one and $KG^{\alpha}v(\chi_{\alpha}) \cong \rho(KG^{\alpha})$.

And the second statement $K(\chi_{\alpha}) \cong Z(\rho(KG^{\alpha}))$ follows immediately from Theorem 7.3.8 (iii) in [3, Vol.3].

COROLLARY 6. Let the context be the same as in Theorem 5. Let A be a simple component of KG^{α} corresponding to χ_{α} . Then A is central over K if and only if $K = K(\chi_{\alpha})$.

Proof. The simple component A of KG^{α} is isomorphic to $KG^{\alpha}v(\chi_{\alpha})$ with a block idempotent $v(\chi_{\alpha})$ of KG^{α} . Thus A is central over K if and only if $K = Z(A) \cong Z(KG^{\alpha}v(\chi_{\alpha})) \cong K(\chi_{\alpha})$ by Theorem 5.

We are now able to recast the definition of projective Schur algebra in the following form.

THEOREM 7. An algebra A is a projective Schur K-algebra if and only if there exists a finite group G, a 2-cocycle $\alpha \in Z^2(G, K^*)$ and an irreducible α -character χ_{α} of G over E such that $K = K(\chi_{\alpha})$ and $A \cong KG^{\alpha}e(\chi_{\alpha})$, where $e(\chi_{\alpha})$ is as in (4).

Proof. Let A be a projective Schur K-algebra. Then A is a central simple K-algebra that is a homomorphic image of KG^{α} for a finite group G and a 2-cocycle $\alpha \in Z^2(G, K^*)$.

Let v be a block idempotent of KG^{α} such that $A=KG^{\alpha}v$. Since v is a sum of distinct block idempotents of EG^{α} , we may let e be a block idempotent of EG^{α} which is a summand of v. Let χ_{α} be the irreducible α -character of G over E associated with e. Then we can write $e=e(\chi_{\alpha})=(\chi_{\alpha}(1)/|G|)\sum_{g\in G}\alpha^{-1}(g,g^{-1})\chi_{\alpha}(g^{-1})a_{g}$. By considering the fields $K\subset K(\chi_{\alpha})\subset K(\Omega_{\alpha})\subset E$ as in Theorem 3 and by letting $\mathcal{G}=\mathrm{Gal}(K(\Omega_{\alpha})/K)$, without loss of generality we may write $v=v(\chi_{\alpha})=\sum e(\chi_{\alpha}^{\tau})$ which is the sum of distinct $e(\chi_{\alpha}^{\tau})$ for $\tau\in\mathcal{G}$ as in (5).

Since $A = KG^{\alpha}v(\chi_{\alpha})$ is central, we have $K = K(\chi_{\alpha})$ due to Corollary 6. And since $e(\chi_{\alpha}) \subset v(\chi_{\alpha}) \subset e(\chi_{\alpha}) + \sum e(\chi_{\alpha}^{\tau})$ where the sum ranges over $\tau \in \operatorname{Gal}(K(\Omega_{\alpha})/K) - \operatorname{Gal}(K(\Omega_{\alpha})/K(\chi_{\alpha}))$ by the proof of Theorem 5, it follows that $e(\chi_{\alpha}) = v(\chi_{\alpha})$, so $A = KG^{\alpha}v(\chi_{\alpha})$ is isomorphic to $KG^{\alpha}e(\chi_{\alpha})$. The other direction is easy to see.

3. Projective Schur algebra over a field

A K-algebra Γ is said to be definable over a subfield L of K if Γ is isomorphic to $K \otimes_L \Gamma' = {\Gamma'}^K$ for some L-algebra Γ' . It is known that KG is definable over $\mathbb Q$ if $\operatorname{char} K = 0$, and KG^{α} is definable over a subfield L of K if L contains the values of $\alpha \in Z^2(G,K^*)$ [3, Vol.3(7.1.1)]. For a simple Γ -module V, V^E need not be a semisimple Γ^E -module. However if Γ is definable over a perfect subfield of K (or if K itself is perfect) then V^E is semisimple ([3, Vol.3(7.1.3)]).

THEOREM 8. Let K be an algebraic number field and A be a projective Schur K-algebra which is an image of KG^{α} for a finite group G and $\alpha \in Z^2(G, K^*)$. Let M_{α} be a subfield of K containing the values of α . Then for the maximal radical extension field k of M_{α} in K, there is a projective Schur k-algebra A' such that $A \cong K \otimes_k A'$.

Proof. Let χ_{α} be the α -character of G over an algebraic closure E that corresponds to the simple KG^{α} -algebra A. Let $\Omega_{\alpha} = \langle \mu, \{\delta_g | g \in G\} \rangle$ be the subset of E^* , where μ is the set of |G|-th root of unity in E and $\delta_g^{o(g)} = \prod_{i=1}^{o(g)} \alpha(g^i, g)$ (see Theorem 3). Then there is a tower of fields $K \subseteq K(\chi_{\alpha}) \subseteq K(\Omega_{\alpha}) \subseteq E$, and by Theorem 7 we are able to write

$$A \cong KG^{\alpha}e(\chi_{\alpha})$$
 and $K(\chi_{\alpha}) = K$,

where $e(\chi_{\alpha}) = (\chi_{\alpha}(1)/|G|) \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) a_g$ is the block idempotent of EG^{α} (see (4)).

Consider two extension fields $k(\chi_{\alpha})$ and $k(\Omega_{\alpha})$ of k adjoined by the values of χ_{α} and the set Ω_{α} to k respectively. Then $k \subseteq k(\chi_{\alpha}) \subseteq k(\Omega_{\alpha}) \subseteq E$, and $k(\Omega_{\alpha})$ is a finite radical Galois extension of k because $\delta_g^{o(g)} = \prod_{i=1}^{o(g)} \alpha(g^i, g) \in M_{\alpha} \subseteq k$. We denote $Gal(k(\Omega_{\alpha})/k)$ by \mathcal{G}' .

Obviously KG^{α} is definable over k since all values of α are in $M_{\alpha} \subseteq k$. Thus $KG^{\alpha} = K \otimes_k kG^{\alpha}$, where the K-basis a_g of KG^{α} is also considered as a k-basis of kG^{α} , and the block idempotent $e(\chi_{\alpha})$ of EG^{α} belongs to $k(\chi_{\alpha})G^{\alpha} \subseteq k(\Omega_{\alpha})G^{\alpha}$.

Let A' be the simple component of kG^{α} corresponding to χ_{α} . Due to Theorem 5, $v'(\chi_{\alpha}) = \sum_{\tau} e(\chi_{\alpha}^{\tau})$ where τ runs over \mathcal{G}' such that all $e(\chi_{\alpha}^{\tau})$ are distinct is a block idempotent of kG^{α} associated with χ_{α} . Here we may assume $e(\chi_{\alpha}) \subset v'(\chi_{\alpha})$. And the simple component A' is is isomorphic to $kG^{\alpha}v'(\chi_{\alpha})$. We are now enough to show that A' is a projective Schur k-algebra satisfying $A \cong K \otimes_k A'$.

Clearly $K \cap k(\Omega_{\alpha})$ is a radical extension of k contained in K, thus $K \cap k(\Omega_{\alpha})$ is also radical over M_{α} because k is radical over M_{α} (see [2, (3.10.1)]). But since k is a maximal radical extension of M_{α} in K, it follows that $k \subseteq K \cap k(\chi_{\alpha}) \subseteq K \cap k(\Omega_{\alpha}) \subseteq k$, and they are all same.

Every value of χ_{α} is contained in K, for $K = K(\chi_{\alpha})$. And $\chi_{\alpha}(g) \in k(\chi_{\alpha})$ for all $g \in G$. Thus $\chi_{\alpha}(g) \in K \cap k(\chi_{\alpha}) = k$, so $k = k(\chi_{\alpha})$. Hence by making use of Corollary 6, A' is a central simple k-algebra.

Since $e(\chi_{\alpha})$ belongs to $k(\chi_{\alpha})G^{\alpha} = kG^{\alpha}$, every $\tau \in \mathcal{G}' = \operatorname{Gal}(k(\Omega_{\alpha})/k)$ leaves $e(\chi_{\alpha})$ fixed, so $v'(\chi_{\alpha}) = e(\chi_{\alpha})$. Thus the simple algebra $A' \cong kG^{\alpha}v'(\chi_{\alpha})$ is isomorphic to $kG^{\alpha}e(\chi_{\alpha})$, hence A' is a projective Schur k-algebra due to Theorem 7. Therefore our required situation follows

immediately that

$$A \cong KG^{\alpha}e(\chi_{\alpha}) \cong K \otimes_k kG^{\alpha}e(\chi_{\alpha}) \cong K \otimes_k A'. \qquad \Box$$

Without loss of generality we may assume that M_{α} is the smallest subfield of K containing all values of α . We showed that a projective Schur K-algebra can be obtained by K-scalar extension of a projective Schur k-algebra where k is a certain subfield of K. This observation will be clear if we assume the following case.

COROLLARY 9. Let A be a projective Schur K-algebra which is a homomorphic image of KG^{α} . With the same context in Theorem 8, let $M_{\alpha}(\Omega_{\alpha})$ be the extension field of M_{α} adjoining the set Ω_{α} . If $k = K \cap M_{\alpha}(\Omega_{\alpha})$, then A is a K-scalar extension of a projective Schur k-algebra.

Proof. Due to Theorem 7, we may write $A \cong KG^{\alpha}e(\chi_{\alpha})$ and $K = K(\chi_{\alpha})$. Since values of α are contained in both K and M_{α} , KG^{α} is definable over k so that $KG^{\alpha} \cong K \otimes_k kG^{\alpha}$.

From $k(\chi_{\alpha}) = K(\chi_{\alpha}) \cap M_{\alpha}(\Omega_{\alpha}) = K \cap M_{\alpha}(\Omega_{\alpha}) = k$, $e(\chi_{\alpha}) \in EG^{\alpha}$ is contained in kG^{α} and is left fixed by all $\tau \in \operatorname{Gal}(k(\Omega_{\alpha})/k)$. Hence the block idempotent $v'(\chi_{\alpha})$ in kG^{α} which is a sum of distinct $e(\chi_{\alpha}^{\tau})$'s for $\tau \in \operatorname{Gal}(k(\Omega_{\alpha})/k)$ is equal to $e(\chi_{\alpha})$. Thus the central simple k-algebra $A' \cong kG^{\alpha}v'(\chi_{\alpha})$ associated with χ_{α} is isomorphic to $kG^{\alpha}e(\chi_{\alpha})$, and it follows that $A \cong KG^{\alpha}e(\chi_{\alpha}) = K \otimes_k kG^{\alpha}e(\chi_{\alpha}) \cong K \otimes_k A'$.

In Corollary 9, if $\alpha = 1$ then $k = K \cap M_{\alpha}(\Omega_{\alpha})$ equals $K \cap \mathbb{Q}(\mu)$, which is the same field chosen in Theorem 2 for Schur algebra. Theorem 8 provides a partial analog of Theorem 2 that $A \cong K \otimes_k A'$ for $[A] \in PS(K)$ and $[A'] \in PS(k)$. However it does not imply the equality $PS(K) = K \otimes_k PS(k)$, even it is not true. For instance, if K is an algebraic number field then PS(K) is the whole Brauer group B(K) due to [4], hence the equality would mean that every element in B(K) comes from $B(\mathbb{Q})$, which is not correct.

THEOREM 10. Let $K, E, \alpha \in Z^2(G, K^*)$, χ_{α} and $v(\chi_{\alpha})$ be the same as in Theorem 8. Let $A \cong KG^{\alpha}v(\chi_{\alpha})$ be a simple component of KG^{α} corresponding to χ_{α} . If $\beta \in Z^2(G, K^*)$ is cohomologous to α (denote it by $\alpha \sim \beta$) then there is an irreducible β -character χ_{β} of G over E such that $K(\chi_{\alpha}) = K(\chi_{\beta})$ and $v(\chi_{\alpha}) = v(\chi_{\beta})$, so the simple component B of KG^{β} corresponding to χ_{β} is isomorphic to A, as K-algebras.

Proof. Let ρ be an irreducible α -representation of G over E which affords χ_{α} . Let $\beta(g,x) = \alpha(g,x)t(g)t(x)t^{-1}(gx)$ with a map $t: G \to K^*$ (t(1) = 1) for $g, x \in G$. Then it is easy to see that ρ' and χ_{β} defined by

 $\rho'(g) = t(g)\rho(g)$ and $\chi_{\beta}(g) = t(g)\chi_{\alpha}(g)$ are irreducible β -representation and β -character of G respectively, and ρ' affords χ_{β} . Since $\chi_{\beta}(g) = t(g)\chi_{\alpha}(g) \in K(\chi_{\alpha})$, $K(\chi_{\beta}) \subseteq K(\chi_{\alpha})$ and they are equal. Moreover since

$$\prod_{i=1}^{o(g)} \beta(g^i,g) = \prod_{i=1}^{o(g)} \alpha(g^i,g) t(g^i) t(g) t^{-1}(g^{i+1}) = \lambda_g \cdot t(g)^{o(g)} \quad \text{for } g \in G,$$

where λ_g is in (3), we may take o(g)-th root δ'_g of $\prod_{i=1}^{o(g)} \beta(g^i, g)$ as $\delta_g \cdot t(g)$, where $\delta_g^{o(g)} = \lambda_g$. Hence

$$K(\Omega_{\beta}) = K(\langle \mu, \{\delta'_q | g \in G\} \rangle) = K(\langle \mu, \{\delta_g | g \in G\} \rangle) = K(\Omega_{\alpha}),$$

so we shall denote it by $K(\Omega) = K(\Omega_{\alpha}) = K(\Omega_{\beta})$.

Let $\{a_g | g \in G\}$ be a K-basis of KG^{α} . Then $b_g = t(g)a_g$ forms a basis of KG^{β} , and $KG^{\alpha} \cong KG^{\beta}$ as K-algebras under $a_g \mapsto t^{-1}(g)b_g$ $(g \in G)$. Moreover the block idempotent $e(\chi_{\beta})$ of EG^{β} is equal to $e(\chi_{\alpha})$ of EG^{α} , because

$$e(\chi_{\beta})$$

$$= \frac{\chi_{\beta}(1)}{|G|} \sum_{g \in G} \beta^{-1}(g, g^{-1}) \chi_{\beta}(g^{-1}) b_{g}$$

$$= \frac{t(1)\chi_{\alpha}(1)}{|G|} \sum_{g \in G} \alpha^{-1}(g, g^{-1}) t^{-1}(g) t^{-1}(g^{-1}) t(gg^{-1}) t(g^{-1}) \chi_{\alpha}(g^{-1}) t(g) a_{g}$$

$$= \frac{\chi_{\alpha}(1)}{|G|} \sum_{g \in G} \alpha^{-1}(g, g^{-1}) \chi_{\alpha}(g^{-1}) a_{g} = e(\chi_{\alpha}),$$

thus $v(\chi_{\beta})$ the sum of distinct $e(\chi_{\beta}^{\tau})$ for $\tau \in \operatorname{Gal}(K(\Omega)/K)$ is equal to $v(\chi_{\alpha})$. Hence it follows immediately that the simple component B of KG^{β} corresponding to χ_{β} is isomorphic to $KG^{\beta}v(\chi_{\beta}) \cong KG^{\alpha}v(\chi_{\alpha}) \cong A$.

Let A be a projective Schur K-algebra. Then due to Theorem 7, $A \cong KG^{\alpha}e(\chi_{\alpha})$ and $K(\chi_{\alpha}) = K$ with $\alpha \in Z^{2}(G, K^{*})$ and an irreducible α -character χ_{α} of a finite group G. If we consider $\beta \in Z^{2}(G, K^{*})$ such that $\alpha \sim \beta$ then A is isomorphic to a simple algebra $B \cong KG^{\beta}e(\chi_{\beta})$ for some irreducible β -character χ_{β} due to Theorem 10. Furthermore since $K(\chi_{\beta}) = K(\chi_{\alpha}) = K$, B is a projective Schur K-algebra. Now applying Theorem 8 to both A and B, there exists a projective Schur k_{α} -algebra A' and a projective Schur k_{β} -algebra B' such that

$$K \otimes_{k_{\alpha}} A' \cong A \cong B \cong K \otimes_{k_{\beta}} B',$$

where M_{α} [resp. M_{β}] is the (smallest) subfield of K containing all values of α [resp. β], and k_{α} [resp. k_{β}] is the maximal radical extension of M_{α} [resp. M_{β}] contained in K. We observe that though $K(\chi_{\alpha}) = K(\chi_{\beta})$ and $K(\Omega_{\alpha}) = K(\Omega_{\beta})$, it is not necessarily M_{α} and M_{β} , and k_{α} and k_{β} are same respectively.

THEOREM 11. Let K be an algebraic number field, and A and B be any projective Schur K-algebras. Then there exist a subfield k of K and projective Schur k-algebras A_0 and B_0 such that $A \cong K \otimes_k A_0$ and $B \cong K \otimes_k B_0$.

Proof. Let A and B be homomorphic images of KG^{α} and KH^{β} respectively where G and H are finite groups, $\alpha \in Z^2(G, K^*)$ and $\beta \in Z^2(H, K^*)$. Due to Theorem 8 there are M_{α} [resp. M_{β}] which is the smallest subfield of K containing all values of α [resp. β], and k_{α} [resp. k_{β}] which is the maximal radical extension of M_{α} [resp. M_{β}] in K, satisfying

$$A \cong K \otimes_{k_{\alpha}} A'$$
 and $B \cong K \otimes_{k_{\beta}} B'$,

where A' and B' are projective Schur k_{α} and k_{β} -algebras respectively. Let F be a subfield of K containing the values of both α and β . And let k be the maximal radical extension of F in K. Obviously $M_{\alpha} \subseteq F$ and $M_{\beta} \subseteq F$.

It is easy to see that k_{α} and k_{β} are contained in k. In fact, since k_{α} is a radical extension of M_{α} , we may write $k_{\alpha} = M_{\alpha}(\Delta_{\alpha})$ with a subset Δ_{α} of k_{α}^* such that $\Delta_{\alpha}M_{\alpha}^*/M_{\alpha}^*$ is torsion. Clearly $M_{\alpha} \subseteq F \subseteq k$. Moreover if $x \in \Delta_{\alpha}$ then $x^m \in M_{\alpha} \subseteq F$ for some m > 0, thus xF^* is of finite order in K^*/F^* . Due to the maximality of k in K, we have $x \in k$ and $\Delta_{\alpha} \subseteq k$, thus $k_{\alpha} \subseteq k$. Similarly we have $k_{\beta} \subseteq k$.

Now since both KG^{α} and KH^{β} are definable over k, we have $KG^{\alpha} = K \otimes_k kG^{\alpha}$ and $KH^{\beta} = K \otimes_k kH^{\beta}$. And by applying Theorem 8 to F and its maximal radical extension k in K, we can conclude that there exist projective Schur k-algebras A_0 and B_0 such that $A \cong K \otimes_k A_0$ and $B \cong K \otimes_k B_0$.

Theorem 11 motivates to construct a subset $PS_F(K)$ of PS(K) for a subfield F of K: let $F \subseteq K$ and let $PS_F(K)$ be the set of similar classes [S] of K-algebras where [S] contains a projective Schur K-algebra that is an image of KG^{α} definable over F for some finite group G and $\alpha \in Z^2(G, K^*)$.

Obviously, $PS_F(K)$ is a subgroup of PS(K) for, let $[S_i] \in PS_F(K)$ be with $A_i \in [S_i]$ (i = 1, 2) where A_i is an image of $KG_i^{\alpha_i}$ and $KG_i^{\alpha_i}$ is definable over F. Then $A_1 \otimes_K A_2$ is represented by $K(G_1 \times G_2)^{\alpha_1 \times \alpha_2}$, where

 $\alpha_1 \times \alpha_2$ is defined by $\alpha_1 \times \alpha_2((g_1,g_2),(x_1,x_2)) = \alpha_1(g_1,x_1)\alpha_2(g_2,x_2)$ for $g_i,x_i \in G_i$ (i=1,2). Moreover $K(G_1 \times G_2)^{\alpha_1 \times \alpha_2}$ is definable over F because $K(G_1 \times G_2)^{\alpha_1 \times \alpha_2} = KG_1^{\alpha_1} \otimes_K KG_2^{\alpha_2} = (K \otimes_F FG_1^{\alpha_1}) \otimes_K (K \otimes_F FG_2^{\alpha_2}) = K \otimes_F (FG_1^{\alpha_1} \otimes_F FG_2^{\alpha_2}) = K \otimes_F F(G_1 \times G_2)^{\alpha_1 \times \alpha_2}$. Thus $A_1 \otimes_K A_2 \in [S_1][S_2]$ and $[S_1][S_2] \in PS_F(K)$. In particular if α_i has values in F then so does $\alpha_1 \times \alpha_2$.

Let [S] be any element in $PS_F(K)$ and $A \in [S]$ be an image of KG^{α} for some $\alpha \in Z^2(G, K^*)$. Then there is an irreducible α -character χ_{α} such that $K = K(\chi_{\alpha})$ and $A \cong KG^{\alpha}e(\chi_{\alpha})$ by Theorem 7, where $e(\chi_{\alpha})$ is as in (4). We note that since KG^{α} is definable over F, it is also definable over the maximal radical extension field k of F in K. Moreover due to Theorem 8, $A \cong K \otimes_k kG^{\alpha}e(\chi_{\alpha})$. But since $[kG^{\alpha}e(\chi_{\alpha})] \in PS_F(k)$, $[A] = K \otimes_k [kG^{\alpha}e(\chi_{\alpha})]$ belongs to $K \otimes_k PS_F(k)$.

Hence the following theorem is straightforward.

THEOREM 12. Let K be an algebraic number field and $F \subset K$. Then $PS_F(K)$ is a subgroup of PS(K) and $PS_F(K) = K \otimes_k PS_F(k)$ for the maximal radical extension field k of F in K.

As an application to a special class of projective Schur algebras, we consider the radical (abelian) algebra ([1]) which is a crossed product algebra $(L/K, \alpha')$ where $L = K(\Omega)$ is a radical (abelian) G-Galois extension of K (that is, Ω is a $G = \operatorname{Gal}(L/K)$ -invariant subgroup of L^* (i.e., $\sigma(\Omega) \subseteq \Omega$ for any $\sigma \in G$) such that $\Omega K^*/K^*$ is a torsion group), and $\alpha' \in Z^2(G, L^*)$ is the image of some $\alpha \in Z^2(G, \Omega)$ under the inclusion $\Omega \hookrightarrow L^*$. The radical algebra is an analogue of the cyclotomic algebra in the context of projective Schur algebra, and every projective Schur division algebra is itself a radical abelian algebra. The set of similarity classes of radical K-algebra forms a radical group $\operatorname{Rad}(K)$ which is a subgroup of PS(K).

THEOREM 13. Let k be a maximal radical extension of \mathbb{Q} contained in a field K. Then for any $[S] \in Rad(K)$, $[S]^h$ is a K-scalar extension of an element in Rad(k) for some h > 0.

Proof. Let $A = (K(\Omega)/K, \alpha')$ be a radical K-algebra contained in [S]. Then [A] = [S], $K(\Omega)$ is a radical G-Galois extension of K with $G = \operatorname{Gal}(K(\Omega)/K)$, and $\alpha' \in Z^2(G, K(\Omega)^*)$ is the image of $\alpha \in Z^2(G, \Omega)$. And for any $\sigma \in G$ and $\omega \in \Omega$, $\omega^n \in K^*$ for some integer n > 0 and $\sigma(\omega)$ belongs to Ω . Now let

$$\Omega_0 = \{ \omega \in \Omega | \ \omega^n \in k^* \text{ for some } n > 0 \}.$$

Then $\Omega_0 < \Omega$, $\Omega_0 k^*/k^*$ is a torsion group and $k(\Omega_0)$ is a radical extension of k. Since k is the maximal radical extension contained in K, we have $K \cap k(\Omega_0) = k$.

Consider the field extensions $K \subseteq K(\Omega_0) \subseteq K(\Omega)$ and $k \subseteq k(\Omega_0) \subseteq k(\Omega)$. Let ω be any element in Ω_0 . Then $\omega^n \in k^* \subset K$, and $\sigma(\omega)^n = \sigma(\omega^n) = \omega^n \in k^*$ (i.e., $\sigma(\Omega_0) \subset \Omega_0$) for any $\sigma \in \operatorname{Aut}_K K(\Omega_0)$. Let x be any element in $K(\Omega_0) - K$. Then $x \in K(\Omega) - K$ and there is $\tau \in \operatorname{Aut}_K K(\Omega)$ such that $\tau(x) \neq x$, for $K(\Omega)/K$ is Galois. Denote $\tau|_{K(\Omega_0)}$ by τ_0 . If we write any element $y \in K(\Omega_0)$ by $y = \sum a_i \omega_i$ with $a_i \in K$, $\omega_i \in \Omega_0$ then $\tau_0(y) = \tau(y) = \sum a_i \tau(\omega_i) \in K(\Omega_0)$. This shows that τ_0 can be regarded as an element in $\operatorname{Aut}_K K(\Omega_0)$ satisfying $\tau_0(x) = \tau(x) \neq x$. Therefore $K(\Omega_0)$ is a radical G_0 -Galois extension of K where $G_0 = \operatorname{Gal}(K(\Omega_0)/K)$.

Since $\operatorname{Gal}(K(\Omega_0)/K) \cong \operatorname{Gal}(k(\Omega_0)/(K \cap k(\Omega_0))) = \operatorname{Gal}(k(\Omega_0)/k)$, $k(\Omega_0)$ is also G_0 -Galois radical over k; we shall denote $\operatorname{Gal}(k(\Omega_0)/k)$ by the same notation G_0 . If we write $H = \operatorname{Gal}(K(\Omega)/K(\Omega_0))$ then G/H is isomorphic to G_0 .

From $A = (K(\Omega)/K, \alpha')$, let Γ_{α} be the group extension of Ω by G

$$\alpha: 1 \to \Omega \to \Gamma_{\alpha} \xrightarrow{j} G \to 1,$$

which corresponds to $\alpha \in Z^2(G,\Omega)$. Then $A=K(\Gamma_\alpha)$ as a K-vector space.

Consider the homomorphism [8, (5.3.2)]

$$v_{G\to G/H}: H^2(G,\Omega)\to H^2(G/H,\Omega^H),$$

defined in the following manner. Let $j^{-1}(H) = W$ and let W_c be the commutator subgroup of W. Then there is a group extension

$$\alpha_c : 1 \to W/W_c \to \Gamma_\alpha/W_c \to G/H \to 1$$

having a factor set α_c in $Z^2(G/H, W/W_c)$. Denote by Λ the reduced group theoretical transfer map $W/W_c \to \Omega^H$.

The Λ is a G/H-homomorphism and induces a homomorphism of cohomology groups $\overline{\Lambda}: H^2(G/H,W/W_c) \to H^2(G/H,\Omega^H)$. Then $v_{G\to G/H}$ is defined by $v_{G\to G/H}(\bar{\alpha}) = \overline{\Lambda}(\bar{\alpha}_c)$, where $\bar{\alpha} \in H^2(G,\Omega)$ is the cohomology class of α . It can be seen that $v_{G\to G/H}$ is a homomorphism. And we denote $v_{G\to G/H}(\bar{\alpha})$ by $\bar{\beta} \in H^2(G/H,\Omega^H)$.

We observe $\Omega^H = \Omega_0$. In fact if $\omega \in \Omega^H$ then $\omega \in \Omega$ is fixed by all elements in $H = \operatorname{Gal}(K(\Omega)/K(\Omega_0))$, so $\omega \in \Omega_0$. Conversely if $\omega \in \Omega_0$ then $\omega \in \Omega \cap K(\Omega_0)$ is fixed by H. Hence we may regard β as an element

in $Z^2(G_0,\Omega_0)$, and we have a group extension Γ_β of Ω_0 by G_0 :

$$\beta: 1 \to \Omega_0 \to \Gamma_\beta \to G_0 \to 1.$$

If let $\beta' \in Z^2(G_0, k(\Omega_0)^*)$ be an image of β under the inclusion $\Omega_0 \hookrightarrow k(\Omega_0)^*$ and let $B = (k(\Omega_0)/k, \beta')$ be the crossed product algebra then $B = k(\Gamma_\beta)$ is a radical k-algebra, so $[B] \in \text{Rad}(k)$.

In connection with the inflation map $H^2(G_0, \Omega_0) \cong H^2(G/H, \Omega^H) \stackrel{\text{inf}}{\to} H^2(G, \Omega)$, the composition map (inf $\cdot v_{G \to G/H}$) on $H^2(G, \Omega)$ defines

$$\bar{\alpha}^{|H|} = (\inf \cdot v_{G \to G/H})(\bar{\alpha}) = \inf(\bar{\beta})$$

[8, (5.3.3)]. Hence $\inf \beta$ is cohomologous to $\alpha^{|H|}$. Thus due to [6, (29,13), (29,16)], we have the following isomorphisms of crossed product algebras:

$$K \otimes [B] = K \otimes \left[(k(\Omega_0)/k, \beta') \right]$$

$$= \left[(K(\Omega_0)/K, \beta') \right]$$

$$= \left[(K(\Omega)/K, \inf \beta') \right]$$

$$= \left[(K(\Omega)/K, \alpha'^{|H|}) \right]$$

$$= \left[(K(\Omega)/K, \alpha') \right]^{|H|}$$

$$= \left[A \right]^{|H|}$$

$$= [S]^{|H|}.$$

In particular when |H|=1 (i.e., $K(\Omega)=K(\Omega_0)$), a radical K-algebra can be extended from a radical k-algebra where k is the maximal radical extension in K.

References

- E. Aljadeff and J. Sonn, Projective Schur division algebras are abelian crossed products, J. Algebra 163 (1994), 795–805.
- [2] J. R. Bastida, *Field extensions and Galois theory*, Encyclopedia of Mathematics and its applications 22, Addision-Wesley: Reading, Massachusetts, 1984.
- [3] G. Karpilovsky, Group representation, Elsevier Science, North Holland, 1 (1992), 3 (1994).
- [4] F. Lorenz and H. Opolka, Einfache Algebren und projektive Darstellungen über Zahlköpern, Math. Z. 162 (1978), 175–182.
- [5] R. Mollin, The Schur group of a field of characteristic zero, Pacific J. Math. 76 (1978), 471-478.
- [6] I. Reiner, Maximal orders, Academic Press: London, New York, San Francisco, 1975.

- [7] C. R. Riehm, The linear and quadratic Schur subgroups over the S-integers of a number field, Proc. Amer. Math. Soc. 107 (1989), no. 1, 83-87.
- [8] E. Weiss, Cohomology of groups, Academic Press, New York, 1969.
- [9] T. Yamada, *The Schur subgroup of the Brauer group*, Lecture Notes in Mathematics 397, Springer-Verlag: Berlin, New York, 1974.

DEPARTMENT OF MATHEMATICS, HANNAM UNIVERSITY, DAEJEON 306-791, KOREA *E-mail*: emc@hannam.ac.kr