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ON THE ANALYTIC PART OF
HARMONIC UNIVALENT FUNCTIONS

BAsEM AREF FRASIN

ABSTRACT. In [2], Jahangiri studied the harmonic starlike func-
tions of order «, and he defined the class 73 () consisting of func-
tions f = h + g where h and g are the analytic and the co-analytic
part of the function f, respectively. In this paper, we introduce the
class T3 (c, B) of analytic functions and prove various coefficient in-
equalities, growth and distortion theorems, radius of convexity for
the function h, if the function f belongs to the classes T3(o) and
Tr(a, B).

1. Introduction

A continuous complex valued function f = u+iv defined in a simply
connected complex domain D is said to be harmonic in D if both « and
v are real harmonic in D. In any simply connected domain we can write
f = h+ g, where h and g are analytic in D. We call h the analytic part
and g the co-analytic part of f. A necessary and sufficient for f to be
locally univalent and sense preserving in D is that |h'(2)| > |¢'(2)] in D.

Let H denote the family of functions f = h+ g that are harmonic uni-
valent and sense preserving in the unit disk U ={z : |2| < 1} for which
f(0) = f,(0) =1 = 0. Then for f = h+ g € H we may express the
analytic functions h and g as

o0 [ e]
(1.1) h(z) =z + Zanzn, g(z) =) bp2", |h| <l

n=2 n=1
The harmonic function f = h + § for g = 0 reduces to an analytic
function f = h.

In 1984, Clunie and Sheil-Small[l] investigated the class H as well
as its geometric subclasses and obtained some coefficient bounds. Since
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then, there has been several papers related on H and its subclasses.
Jahangiri[2], Silverman(3], Silverman and Silvia[4] studied the harmonic
starlike functions. Jahangiri[4] defined the class T3;() consisting of func-
tions f = h + g such that h and g are of the form

o0 e ]
(1.2) h(z) =2z — Z lan| 2%, g(z) = Z || 2™
n=2 n=1
which satisfy the condition
9 0
. — > < = ,
(13) a0 (argf(re ))_a, 0<a<l, |z|=r<l1

Also Jahangiri[2] proved that if f = h + g is given by (1.1) and if

0
n—ao n-+aoa
. < < 1 =
(1.4) Z(l_a|anl+1_a|bn|>_2, 0<a<l, a =1,

n=1
then f is harmonic, univalent, and starlike of order o in Y. This condi-
tion is proved to be also necessary if f € Ty (a). The case when a =0
is given in [4] and for a = b; =0, see [3].
A function f = h+ g € Tx(o) is said to be in the class T (e, 8) if
the analytic functions h and g satisfies the condition

(1.5) Re {azh"(z) + @} >1-16] (BeC, a>0, zell).

In the present paper and for f = h + g € Ty(o, B8), we prove various
coefficient inequalities, growth and distortion theorems, radii of close-
to-convexity, starlikeness and convexity for the function A, the analytic
part of f .

2. Coefficient inequalities

THEOREM 1. Let the function f = h+ g be so that h and g are given
by (1.2). If f € Ty(e, 8), then

e 1-3a
(2.1) an(n — 1) |an| — <16,
> | —

where a; = b1 = 1,0 < a« < 1/3 and 8 € C. The result (2.1) is sharp.
Proof. Let f(z) € Ty(a,3). From (1.5) we have

oo o0
Re{—Zan(n —1)|an| "+ 14+ Z |br| z"—l} >1-104|.

n=2 n=2
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Choose z to be real and let z — 17, we get

1- {Z an(n — 1) |ap| — Z Ibnl} >1-|p
n=2 n=2

or, equivalently

[e.¢}

(2:2) 3" {an(n—1) |an| — [bal} < |6].

n=2

Since f(z) € Ti(a), from (1.4) we obtain

[(n+a > (n—a n+o
al ) < al) <2
S (Fr2mmi) < 3 (T4 kol + Trg )

n=1 n=

or

- :
(2.3) > (n+a)lba) £1-3a,

n=2
that is,

1-3c

2. b,| < > 2).
(2.4) bl <222 (a2 )
A substitution of (2.4) into (2.2) yields the inequality (2.1). O

COROLLARY 1. Let the function f = h + g be so that h and g are
given by (1.2). If f € Ty(c, ), then

n+a)|Bl+1-3a
on(n+a)(n—1)

The result (2.5) is sharp for the functions

_(nta)|f[+1-3a o

(2.5)  Jap| < 0<a<1/3,3€C,n>2).

(2.6) h(z) =z an(n+a)(n— 1) (n >2),
and
(2.7 g(z) =z + 171__{_352'" (n > 2).

THEOREM 2. Let the function f = h+ g be so that h and g are given
by (1.2). If|B1| < |B2|. Then Ty (e, B1) C Tr(c, B2), where 0 < a < 1/3.

Proof. Let f(z) € Ty(a,B1). Then

(e e}

Z [an(n— 1) |lan| — 1n_ 3a] < |6l < |Bal,

— +«
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which completes the proof of Theorem 2. a

3. Growth and distortion theorems

THEOREM 3. Let the function f = h+ g be so that h and g are given
by (1.2). If f €Ty(c, B), then for |z = r <1, we have

Al(2+a)+1-3a Bl(2+0a)+1-3a
(3.1) 7._| I 4a422a2 T2S|h(z)|Sr+| It 4a—:2a2 r2
and
(3.2) 1—|m(2+a)+1_3ar§|h'(z)|51+|ﬁ|(2+a)+1—3a

20 + a? 20+ o2
The results (3.1) and (3.2) are sharp.

Proof. Let f(z) € Ti(c, B), then from (2.2) we have

(3.3) 2042 |an| — Z bn| < 18] for |2| =7 < 1.
n=2

Since f(z) € T3 (), from (2.3) we obtain

(34) ;lbnl <% —

so that (3.3) reduces to

Bl2+a)+1-3x

(3.5) Z| an| < o oa .
Consequently,

|h(z)| 27— Z |an| |r[* =7 — T2Z |an|
36) n=2

o @+ a)+1-30 P
- 4o + 202
and
oo oG
D <r+ ) lanl|r|" < r+rzz|an|

(3.7) n=2

|ﬁ|(2+a)+1—3a 2

<
s 4o + 202
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Furthermore, we note from (2.2) that

(3.8) aZ |an|—2|bn1 <18l

n=2
A substitution of (3.4) into (3.8) ylelds
18I 2+a)+1—3a
. <
(39) an n| 2a + a?
Thus we have
o0
) 16l(2+a)+1-3a
(3.10) |W(2)| > 1~ |T|Zn|an| >1- o o2
and
o0
, !B|(2+a)-|—1——3a
(3.11) W (2)| §1+|’r|n¥2n|anl <1+ T r.

Finally, the equality in (3.1) and (3.2) are attained for the functions h(z)
and g(z) given by

[ﬂ|(2+a)+1—3a 2

(3.12) h(z) =

Ao + 202
and
1 - 3a 2
Nl =
(3.13) g(z) =2+ 2+a
This completes the proof of Theorem 3. a

4. Radii of close-to-convexity, starlikeness and convexity

THEOREM 4. Let the function f = h+ g be so that h and g are given
by (1.2). If f € Ty(a,B) then h(z) is starlike of order p(0 < p < 1)in
|z| < r1, where
r1 = r1(a, B,p)

~ int [ (2a+a?)(1 = p)n ]“ )

(1812 +a) +1-3a)(n—p)
The result is sharp for the function h(z) given by (2.6).

Proof. Tt is sufficient to show that
zh' (2)

-1 <1~
A(z) ’ =Y

(4.1)

(n>2).
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for |z| < r1, where 71 is given by (4.1). From (1. 2) we find that

o
Z (n—1) |an| 2"

o
) 1= 3 fan "
n=2
B/ .
Thus zh( §) 1‘ <1-pif
oo n—
(4. 5 (322) loallP " <1
n=2 1 p

With the aid of (3.9), (4.2) will be true if

n—p |Z|n—1 < (20 + a2)n
1-p 182+ a)+1-3a’

that is, if
. n—1)
(20 + a?)(1 — p)n } /=1
4.3 < >2
) WS |paran e 27
Theorem 4 follows easily from (4.3). O

COROLLARY 2. Let the function f = h + g be so that h and g are
given by (1.2). If f € Ty(a, B) then h(z) is convex of order p(0 < p < 1)
in |z| < 7, where

r2 = r2(a, B, p)

(4.4) (2a + az)(l _ ,0) ]1/(n—1)

(n>2).

= in f
[(!ﬂl (2+a)+1-3a)(n—p)
The result is sharp for the function h(z) given by (2.6)
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