THE CLASS NUMBER OF ORDERS IN A QUATERNION ALGEBRA OVER A DYADIC LOCAL FIELD

SUNGTAE JUN AND INSUK KIM*

ABSTRACT. We find the class number of orders in a quaternion algebra over a dyadic local field.

1. Introduction

A quaternion algebra over a field F means a semi simple algebra of dimension 4 over k. It is known that there are three kinds of primitive orders in quaternion algebras over a local field. An order R of a quaternion algebra A over a local field k is called primitive if it satisfies one of following conditions. If A is a division algebra, R contains the full ring of integers of a quadratic extension field of k. If A is isomorphic to $\operatorname{Mat}_{2\times 2}(k)$, then R contains a subset which is isomorphic either to $\mathfrak{o}_k \oplus \mathfrak{o}_k$ where \mathfrak{o}_k is the ring of integers in k, or to the full ring of integers in a quadratic extension field of k. The arithmetic properties of first two types of primitive orders were studied in [4], [5]. For the remaining type was studied in [6] only for the nondyadic local field case. In this paper we study the remaining type over a dyadic local field and we compute the class number of primitive orders over a dyadic local field.

2. Orders

In this section, we summarize the arithmetic theory of a quaternion algebra and its order.

A lattice on A is a finitely generated \mathbb{Z} module containing a base of A over \mathbb{Q} . An order of A is a lattice on A which is also a subring with 1.

Received July 14, 2004.

²⁰⁰⁰ Mathematics Subject Classification: 11R11.

Key words and phrases: quaternion algebra, order, class number, normalizer.

^{*} This author was supported by Wonkwang University in 2004.

The analogous definitions hold for lattices and orders in $A_p = A \otimes \mathbb{Q}_p$ for a prime p.

Throughout this paper we assume that k is a dyadic local field. Let \mathfrak{o} denote the ring of integers in k, \mathfrak{p} the maximal ideal of \mathfrak{o} . By $\Delta(\alpha)$, we denote the discriminant of α .

$$\Delta(\alpha) = \text{Tr}(\alpha)^2 - 4N(\alpha),$$

where Tr and N are the trace and norm of L over k respectively, where L is a quadratic extension field of k. If Γ is an $\mathfrak o$ algebra of rank 2 contained in L, then $\Gamma = \mathfrak o + \mathfrak o x$ and the discriminant of Γ is

$$\Delta(\Gamma) = \Delta(x) \mod U^2,$$

where U is the set of all units in \mathfrak{o} .

Let $\mathfrak{o}^2 - 4\mathfrak{o} = \{s^2 - 4n \mid s, n \in \mathfrak{o}\}$. Then we consider the set of all possible discriminants $(\mathfrak{o}^2 - 4\mathfrak{o})/U^2$. Note that $\Delta_{\sigma}^* \neq \phi$ only if $\sigma = 2\rho, 0 \leq \rho \leq e$ or $\sigma = 2e + 1$ where $e = \operatorname{ord}_k(2)$. Let

$$\Delta^* = \bigcup_{\sigma=0}^{\infty} \Delta_{\sigma}^* = \left(\bigcup_{\rho=0}^{e} \Delta_{2\rho}^*\right) \cup \Delta_{2e+1}^*.$$

Then we know Γ is a maximal order of a quadratic extension field of k if and only if $\Delta(\Gamma) \in \Delta^*$. If e > 0 and $1 \le \rho \le e$

$$\Delta_{2\rho}^* = \pi^{2\rho} (U^2 + \pi^{2e - 2\rho + 1} U) / U^2.$$

There is a bijective correspondence between elements of Δ^* and quadratic extension fields of k given by $\Delta(\Gamma) \to \Gamma \otimes \mathfrak{o}_k$ for $\Delta(\Gamma)$, an element of Δ^* .

Thus we can classify all quadratic extension fields of a dyadic local field k as follows: Δ_0^* contains one point which corresponds to a unique unramified quadratic extension of k and

$$\Delta_{2e+1}^* = \pi^{2e+1} U/U^2$$

contains $2q^2$ points representatives where $q = |\mathfrak{o}/\mathfrak{p}|$.

DEFINITION 1. Let L be a quadratic extension of k. We define

$$t = t(L) = \operatorname{ord}_k(\Delta(L)) - 1.$$

REMARK. Note that if L is an unramified extension field of k, then t=-1. On the other hand, if L is a ramified extension field of a dyadic field k, then t>0 (see 1.3 in [5]).

Let A be a rational quaternion algebra ramified precisely at the odd prime q and ∞ . That is, $A_q = A \otimes \mathbb{Q}_q$ and $A_{\infty} = A \otimes \mathbb{R}$ are division algebras. Otherwise, $A_p = A \otimes \mathbb{Q}_p$ is isomorphic to a 2×2 matrix algebra, $M_2(\mathbb{Q}_p)$ for a finite prime $p \neq q$ (see [6]).

Fix a prime $p \neq q$ and let L be a quadratic extension field of \mathbb{Q}_p . Then $\left\{ \begin{pmatrix} \alpha & \overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} \middle| \alpha, \beta \in L \right\}$ is a quaternion algebra over \mathbb{Q}_p (see [7], [11]). Let $\left\{ \begin{pmatrix} \alpha & \overline{\beta} \\ \beta & \overline{\alpha} \end{pmatrix} \middle| \alpha, \beta \in L \right\} = L + \xi L$, where $\xi = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Then $\xi \alpha = \overline{\alpha} \xi, \xi^2 = 1$ and $\overline{\xi} = -\xi$.

Hence, we can define the norm of an element in A as its determinant. Let \mathfrak{o} and p be the ring of integers and the prime of k. Let L be a quadratic extension field of k and let P_L be the prime ideal of \mathcal{O}_L which is the ring of integers in L. Finally let Δ be the discriminant of L over k. In [7], we have computed that the possibilities of an order, R of A_2 containing \mathcal{O}_L . We state the results in the following theorem.

THEOREM 2.1. Let the notations be as above. If an order R of A_2 contains \mathcal{O}_L , then R is one of the followings.

- (i) If 2 is a unramified prime in L, $R = \mathcal{O}_L + \xi P_L^{\nu}$.
- (ii) If 2 is a ramified prime in L, $R = \mathcal{O}_L + (1+\xi)P_L^{\nu-t-1}$ or $\overline{R_{\nu}} = \mathcal{O}_L + (1-\xi)P_L^{\nu-t-1}$, where $t = \operatorname{ord}_L(\Delta)$.

Here, ν is a nonnegative integer.

Proof. See [7].
$$\Box$$

DEFINITION 2. Let A be a rational quaternion algebra ramified precisely at one finite prime q and ∞ . An order M of A has level $\tilde{N}=(q;L(2),\nu)$ if

- (i) $M \otimes \mathbb{Z}_p$ is the maximal order of $A \otimes \mathbb{Q}_p$ for an odd prime p,
- (ii) there exists a quadratic extension field L(2) of \mathbb{Q}_2 and a nonnegative integer ν (which is even if L(2) is unramified) such that an order of A_2 containing the ring of integers of L(2) is either R_{ν} or $\overline{R_{\nu}}$.

If L is ramified, then an order of A_2 is either R_{ν} or $\overline{R_{\nu}}$. The relation between R_{ν} and $\overline{R_{\nu}}$ is as follows. Let $e = \operatorname{ord}_k 2$. Then $\operatorname{ord}_L 2 = 2e$. Thus if t < 2e, then $R_0 = \overline{R_0}$. If t = 2e, $R_0 \neq \overline{R_0}$ and $R_1 = \overline{R_1}$ (see remark 1.8 in [4]).

Thus we have the following lemma.

LEMMA 2.2. If R_{ν} is an order of A_2 containing the ring of integers of L, then

1. if L is unramified,

$$R_{2\nu}(L) \subset R_{2\nu-2} \subset \cdots \subset R_0$$

2. if L is ramified and t < 2e,

$$R_{\nu}(L) \subset R_{\nu-1} \subset \cdots \subset R_0,$$

3. if L is ramified and t = 2e,

$$R_{\nu}(L) \subset R_{\nu-1} \subset \cdots R_1 \subset R_0$$

 $\subset \overline{R_0}.$

Remark. The level \tilde{N} can be generalized to arbitrary primes without any difficulties. In this paper, we consider only p=2 case for the computational convenience.

DEFINITION 3. Let M be an order of level \tilde{N} in A. A left M ideal I is a lattice on A such that $I_p = M_p a_p$ (for some $a_p \in A_p^{\times}$) for all $p < \infty$. Two left M ideals I and J are said to belong to the same class if I = Ja for some $a \in A^{\times}$. One has the analogous definition for right M ideals.

DEFINITION 4. The class number of the left ideals for any order M of level \tilde{N} is the number of distinct classes of such ideals. We denote this by $H(\tilde{N})$.

REMARK. Let A be a quaternion algebra and let M be any order of A. The ideal group of J_A of A is

$$J_A = \left\{ \tilde{a} = (a_p) \in \prod_p A_p^{\times} | \ a_p \in U(M_p) \text{ for almost all } p \ \right\},$$

where $U(M_p)$ is the set of all units in M_p .

Here the product is over all primes, finite and infinite. Note that since two orders M and N of A, $M_p = N_p$ for almost all p, J_A is independent of the particular used in this definition. J_A is a locally compact group with the topology induced by the product topology on the open set $\prod_{p \in S} A_p^{\times} \prod_{p \notin S} U(M_p)$, where S ranges over all finite subset of primes containing ∞ . If $\tilde{a} \in J_A$, we define the volume of \tilde{a} as $\operatorname{vol}(\tilde{a}) = \prod_p |N(a_p)|_p$ where $|\cdot|_p$ is normalized such that $|p|_p = \frac{1}{p}$ for $p < \infty$ and $|\cdot|_{\infty}$ is the ordinary absolute value in \mathbb{R} . Let $J_A^1 = \{\tilde{a} \in J_A \mid \operatorname{vol}(\tilde{a}) = 1\}$ and embed $A^{\times} \subset J_A^1$ along the diagonal. Finally, if M is an any order of A, let $\mathfrak{U}(M) = \{\tilde{a} \in J_A^1 \mid a_p \in U(M_p) \text{ for all } p < \infty\}$.

Proposition 2.3. Let M be any order of level \tilde{N} in A. Then

- 1. A^{\times} is a discrete subgroup of J_A^1 .
- 2. J_A^1/A^{\times} is compact.
- 3. $\mathfrak{U}(M)$ is an open compact subgroup of J_A^1 .

Proof. See Weil[13].
$$\Box$$

PROPOSITION 2.4. The double coset $\mathfrak{U}(M)\backslash J_A^1/A^{\times}$ are in 1-1 correspondence with the ideal classes of left M ideals.

Proof. If $J_A^1 = \bigcup_{i=1}^H \mathfrak{U}(M)\tilde{a}_i A^{\times}$, then $M\tilde{a}_i$, $i = 1, \dots, H$, represent the distinct left M ideal classes.

Proposition 2.5. J_A^1 acts transitively(by conjugation) on orders of level \tilde{N} in A.

Proof. The action is for $\tilde{a} \in J_A^1$ and M an order of level \tilde{N} : $M \leftrightarrow \{M_p\} \mapsto \{a_p^{-1}M_pa_p\} \leftrightarrow M'$ and we write $M' = \tilde{a}^{-1}M\tilde{a}$. The action is obviously transitive.

3. The Selberg trace formula

Let G be a locally compact group with an open compact subgroup U and a discrete subgroup Γ with G/Γ compact. Then G is unimodular (i.e., every left Haar measure is right Haar measure) and we normalize Haar measure dx on G such that $\int_U dx = 1$. Let L(G, U) be the set of complex valued continuous functions F on G with compact support such that F(ugu') = F(g) for all $g \in G, u, u' \in U$. Let $L(U \setminus G/\Gamma)$ be the set of all complex valued continuous functions f on G such that $f(ug\gamma) = f(g)$ for all $u \in U, g \in G, \gamma \in \Gamma$, For any $\gamma \in \Gamma$, let $\{\gamma\}$ denote the conjugacy class of γ in Γ and let $\Gamma(\gamma)$ denote the centralizer of γ in Γ . For a discrete subgroup S of G, we also denote by dx the invariant quotient measure on G/S, i.e., if f is continuous with compact support on G, then

$$\int_{G} f(x)dx = \int_{G/S} \left(\sum_{s \in S} f(xs) \right) dx.$$

Any $F \in L(U,G)$ induces a linear transformation on the finite dimensional complex vector space $L(U \setminus G/\Gamma)$ by convolution,

$$(F(f))(x) = (F * f)(x) = \int_G F(xy^{-1})f(y)dy$$

and its trace is given by

Proposition 3.1. (Selberg Trace Formula).

Trace
$$F = \sum_{\{\gamma\}} \int_{G/\Gamma(\gamma)} \psi_{\gamma}(x) dx$$
,

where $\psi_{\gamma}(x) = F(x\gamma x^{-1})$ and the sum is over representatives of all conjugacy classes in Γ .

Proof. See [12].
$$\Box$$

For the next lemmas, we let $G = J_A$, $U = \mathfrak{U}(M)$ and $\Gamma = A^{\times}$.

LEMMA 3.2. Let F be the characteristic function on U. Let dx be the measure on G normalized so that $\int_U dx = 1$. Then

$$H(\tilde{N}) = \sum_{\{\gamma\}} \int_{G/\Gamma(\gamma)} \psi_{\gamma}(x) dx,$$

where $\psi_{\gamma}(x) = F(x\gamma x^{-1})$.

Proof. It is easy to see that F induces the identity map on $L(U\backslash G/\Gamma)$. Thus Trace $F = \dim L(U\backslash G/\Gamma) = |U\backslash G/\Gamma|$. By Proposition 2.4, Trace F is the class number of order M of level \tilde{N} .

LEMMA 3.3. If

$$\int_{G/\Gamma(\gamma)} \psi_{\gamma}(x) dx \neq 0,$$

then $\gamma = \pm 1$, or has a minimal polynomial, $x^2 \pm 1$ or $x^2 \pm x + 1$.

Proof. Let
$$x \in G$$
. If $\psi_{\gamma}(x) \neq 0$, then $F(x\gamma x^{-1}) \neq 0$. That is, $x\gamma x^{-1} \in \mathfrak{U}(M) \Leftrightarrow \gamma \in \mathfrak{U}(x^{-1}Mx) \cap A^{\times} = \mathfrak{U}(x^{-1}Mx)$.

Thus γ is a unit of some order of A. If γ belongs to \mathbb{Q} , then $\gamma = \pm 1$. If $\gamma \notin \mathbb{Q}$, $N(\gamma)$ is a unit in \mathbb{Z} . The minimal polynomial of γ is $f(x) = x^2 - sx + n$ where $s \in \mathbb{Z}$, $n = \pm 1$. If f(x) had a real root, it would mean that \mathbb{R} is a splitting field for A. Thus $s^2 - 4n < 0$, i.e., n = 1 and s = 0 or $s = \pm 1$.

4. The class number

Let A be a rational quaternion algebra ramified precisely at the odd prime q and ∞ and let M be the order in a quaternion algebra of $\tilde{N} = (q; L(2), \nu)$ with $\nu > 1$, where L(2) is the quadratic extension field of \mathbb{Q}_2 . Remark. We define the normalizer of an order M as

$$\mathfrak{N}(M) = \{ \tilde{a} \in J_A^1 | \ \tilde{a}^{-1} M \tilde{a} = M \}$$

locally,
$$\mathcal{N}(M_p) = \{a_p \in A_p^{\times} | a_p^{-1} M_p a_p = M_p\}.$$

In order to compute the normalizer of orders, we first compute the normalizer of orders locally. For the nondyadic case, the normalizer of orders were computed in [6], [8]. Here, we will compute the only dyadic local field case, i.e. p=2 case.

Recall the definition of orders, R_{ν} . For the computational convenience, we introduce a new notation:

$$M(R_{\nu}) = \{ x \in R_0(L)^{\times} \mid x^{-1}R_{\nu}x = R_{\nu} \}.$$

THEOREM 4.1. Let L be a unramified quadratic extension field of k and $k = \mathbb{Q}_2$. Then for an order of $A_2 = A \otimes k$, $R_{\nu}(L)$, we have

$$M(R_{\nu}) = \begin{cases} R_0^{\times}, \\ R_{\nu}^{\times} \cup \xi R_{\nu}^{\times} & \text{for } \nu > 0. \end{cases}$$

Proof. $\nu = 0$ case is trivial. Hence assume that $\nu > 0$. Let $\alpha + \xi \beta \in R_{\nu}(L) = \mathcal{O}_L + \xi P_L^{\nu}$ and $g \in R_0^{\times} = (\mathcal{O}_L + \xi \mathcal{O}_L)^{\times}$.

$$g(\alpha + \xi \beta)\overline{g} = (\gamma + \xi \delta) \cdot (\alpha + \xi \beta) \cdot (\overline{\gamma + \xi \delta})$$

$$= (\alpha \gamma + \beta \overline{\delta} + \xi(\alpha \delta + \beta \overline{\gamma})) \cdot (\overline{\gamma} - \xi \delta)$$

$$= \alpha \gamma \overline{\gamma} + \beta \overline{\gamma} \overline{\delta} - \overline{\alpha} \overline{\delta} \delta - \overline{\beta} \gamma \delta + \xi(\alpha \overline{\gamma} \delta + \beta \overline{\gamma}^2 - \overline{\alpha} \overline{\gamma} \delta - \beta \delta^2)$$

$$\in \mathcal{O}_L + \xi P_L^{\nu}.$$

 $\alpha\overline{\gamma}\delta + \beta\overline{\gamma}^2 - \overline{\alpha}\overline{\gamma}\delta - \beta\delta^2 \in P_L^{\nu}$ implies that $\operatorname{ord}_k((\alpha - \overline{\alpha})\overline{\gamma}\delta) \geq \nu$. Hence either $\operatorname{ord}_L(\delta) \geq \nu$ and $\gamma \in \mathcal{O}_L^{\times}$, or $\operatorname{ord}_L(\gamma) \geq \nu$ and $\delta \in \mathcal{O}_L^{\times}$. This implies that $M(R_{\nu}(L)) = R_{\nu}(L)^{\times} \cup \xi R_{\nu}(L)^{\times}$.

COROLLARY 4.2. Let L be a unramified quadratic extension field of k and $k = \mathbb{Q}_2$. Then $M(R_{\nu})/R_{\nu}^{\times} \approx \{1, \xi\}$ as a set theoretical equivalence for $\nu > 0$.

Proof. This is immediate from the above theorem. \Box

THEOREM 4.3. Let L be a ramified quadratic extension field of k and $k = \mathbb{Q}_2$. Then for an order of $A_2 = A \otimes k$, $R_{\nu}(L)$, we have

$$M(R_{\nu}) = \begin{cases} R_{\nu}^{\times} & \text{if } \nu = 0, \\ R_{\left[\frac{1}{2}(\nu+1)\right]}^{\times} & \text{if } 0 < \nu \le 2t + 2, \\ R_{\nu-t-1}^{\times} \cup \xi R_{\nu-t-1}^{\times} & \text{if } 2t + 2 < \nu, \end{cases}$$

where [x] is the largest integer not greater than x.

Proof. If $\nu = 0$, R_0 is a maximal order. $M(R_0) = R_0^{\times}$ clear from the definition.

Now assume that L is ramified. Let $g \in M(R_{\nu})$. Then gR_1g^{-1} contains R_{ν} and gR_1g^{-1} is the second largest order containing R_{ν} , which implies $gR_{\nu}g^{-1} = R_{\nu}$. Without loss of generality, we assume that $M(R_{\nu}) \subset M(R_1) = R_1^{\times}$. Let $g = c + d + \xi d \in R_1^{\times}$ and $a + b + \xi b \in R_{\nu} = \mathcal{O}_L + (1 + \xi)P_L^{\nu-t-1}$.

$$g(\alpha + \xi\beta)\overline{g}$$

$$= (c + d + \xi d) \cdot (a + b + \xi b) \cdot (\overline{c + d} + \xi \overline{d})$$

$$= (c + d + \xi d) \cdot (a + b + \xi b) \cdot (\overline{c + d} - \xi d)$$

$$= ((c + d)(a + b) + b\overline{d} + \xi((a + b)d + b(\overline{c + d})) \cdot (\overline{c + d} - \xi d)$$

$$= N(c + d)(a + b) + b\overline{d}(\overline{c + d}) - (\overline{a + b})\overline{d}d - \overline{b}(c + d)d$$

$$+ \xi((a + b)(\overline{c + d})d + b(\overline{c + d})^2 - \overline{(c + d)(a + b)}d - \overline{b}d^2)$$

$$\in \mathcal{O}_L + (1 + \xi)P_L^{\nu - t - 1}.$$

Thus we need two conditions,

$$(a+b)(\overline{c+d})d+b(\overline{c+d})^2-\overline{(c+d)(a+b)}d-\overline{b}d^2\in P_L^{\nu-t-1}$$

and

$$N(c+d)(a+b) + b\overline{d}(\overline{c+d}) - (\overline{a+b})\overline{d}d - \overline{b}(c+d)d$$
$$-\{(a+b)(\overline{c+d})d + b(\overline{c+d})^2 - \overline{(c+d)(a+b)}d - \overline{b}d^2\} \in \mathcal{O}_L.$$

For the first one, we have the followings.

$$(a+b)(\overline{c+d})d + b(\overline{c+d})^2 - \overline{(c+d)(a+b)}d - \overline{b}d^2$$

$$= ((a+b) - (\overline{a+b}))(\overline{c+d})d + b(\overline{c+d})^2 - \overline{b}d^2$$

$$= ((a-\overline{a})(\overline{c+d})d + (b-\overline{b})(\overline{c+d})d + b\overline{c}^2 + 2b\overline{c}\overline{d} + b\overline{d}^2 - \overline{b}d^2$$

$$= ((a-\overline{a})(\overline{c+d})d + (b-\overline{b})\overline{c}d + b\overline{c}^2 + 2b\overline{c}\overline{d} + b\overline{d}^2 - \overline{b}d^2 + (b-\overline{b})d\overline{d}$$

$$= ((a-\overline{a})(\overline{c+d})d + (b-\overline{b})\overline{c}d + b\overline{c}^2 + 2b\overline{c}\overline{d} + (b\overline{d} - \overline{b}d)(d + \overline{d}).$$

Since $d \in P_L^{-t}$, $\operatorname{Tr}(d) = d + \overline{d} \in \mathcal{O}_L$. Hence, $b \in P_L^{\nu-t-1}$ implies that $\operatorname{ord}_L((a-\overline{a})(\overline{c+d})d) = t+1+2\operatorname{ord}_L(d) \geq \nu-t-1$ is necessary. That is, $\operatorname{ord}_L(d) \geq \frac{1}{2}\nu-t-1$ and the second condition is easily satisfied if $\operatorname{ord}_L(d) \geq \frac{1}{2}\nu-t-1$. Thus $M(R_{\nu}(L)) = R_{[\frac{1}{2}(\nu+1)]}(L)$, where [x] is the largest integer not greater than x.

$$M(R_{\nu}) = R_{[\frac{1}{2}(\nu+1)]}^{\times}.$$

On the other hand, if $d \in \mathcal{O}_L$ i.e. $\operatorname{ord}_L(d) \geq 2t + 2$, then $\operatorname{ord}_L((a - \overline{a})(\overline{c+d})d) = t + 1 + \operatorname{ord}_L(d) \geq \nu - t - 1$. That is $d \in P_L^{\nu-2t-2}$. Since $\xi \in M(R_{\nu})$ for every $\nu > t + 1$,

$$M(R_{\nu}) = R_{\nu-t-1}^{\times} \cup \xi R_{\nu-t-1}^{\times}. \qquad \Box$$

COROLLARY 4.4. Let L be a ramified quadratic extension field of k and $k = \mathbb{Q}_2$. Then for an order of $A_2 = A \otimes k$, $R_{\nu}(L)$,

$$M(R_{\nu})/R_{\nu}^{\times} \approx \begin{cases} \{1\} & \text{if } \nu = 0, \\ R_{\lfloor \frac{(\nu+1)}{2} \rfloor}^{\times}/R_{\lfloor \frac{(\nu+1)}{2} \rfloor+1}^{\times} \times \cdots \times R_{\nu-1}^{\times}/R_{\nu}^{\times} & \text{if } 0 < \nu \leq 2t+2, \\ R_{\nu-t-1}^{\times}/R_{\nu-t}^{\times} \times \cdots \times R_{\nu-1}^{\times}/R_{\nu}^{\times} & \text{if } 2t+2 < \nu, \end{cases}$$

where \approx is the set theoretical bijective relation.

Proof. $\nu=0$ case is trivial. Assume that $\nu>0$. By Theorem 4.3, $M(R_{\nu})/R_{\nu}^{\times}=R_{[\frac{1}{2}(\nu+1)]}^{\times}/R_{\nu}^{\times}$.

$$R_{[\frac{1}{2}(\nu+1)]}^{\times}/R_{\nu}^{\times}\approx R_{[\frac{1}{2}(\nu+1)]}^{\times}/R_{[\frac{1}{2}(\nu+1)]+1}^{\times}\times R_{[\frac{1}{2}(\nu+1)]+1}^{\times}/R_{\nu}^{\times}$$

and inductively, we can prove

$$M(R_{\nu})/R_{\nu}^{\times} \approx R_{[\frac{1}{2}(\nu+1)]}^{\times}/R_{[\frac{1}{2}(\nu+1)]+1}^{\times} \times \cdots \times R_{\nu-1}^{\times}/R_{\nu}^{\times}$$

for $0 < \nu \le 2t + 2$. Similarly,

$$M(R_{\nu})/R_{\nu}^{\times} = R_{\nu-t-1}^{\times}/R_{\nu}^{\times} \approx R_{\nu-t-1}^{\times}/R_{\nu-t}^{\times} \times \cdots \times R_{\nu-1}^{\times}/R_{\nu}^{\times}$$
 for $\nu > 2t + 2$.

REMARK. If $k = \mathbb{Q}_2$, $|R_{\nu}^{\times}/R_{\nu+1}^{\times}| = 2$ was proved for each $\nu > 0$ (see [7]). This will be used in Theorem 4.7 later.

DEFINITION 5. Let K be a quadratic field extension of \mathbb{Q} contained in A. If \mathcal{O} is an order of K and M is an order of A. \mathcal{O} is optimally embedded in M if $K \cap M = \mathcal{O}$.

REMARK. It is well known that

$$K \cap M = \mathcal{O} \Leftrightarrow K_p \cap M_p = \mathcal{O}_p$$
 for all $p < \infty$.

Any order M' of level \tilde{N} can be written as $M'=\tilde{b}^{-1}M\tilde{b}$ with some $\tilde{b}\in J_A^1$, where M is the canonical order of level \tilde{N} . Suppose $K\cap \tilde{b}^{-1}M\tilde{b}=\mathcal{O}$. If $\tilde{c}\in\mathfrak{N}(M)$, then $K\cap \tilde{b}^{-1}\tilde{c}^{-1}M\tilde{c}\tilde{b}=\mathcal{O}$. Hence it suffices to consider $\tilde{b}\mod\mathfrak{N}(M)$. Further, if $\tilde{a}\in J_K^1$, then we have $K\cap \tilde{a}^{-1}\tilde{b}^{-1}M\tilde{b}\tilde{a}=\mathcal{O}$. Thus $D(\mathcal{O})$ will denote that the number of double cosets $\mathfrak{N}(M)\tilde{b}J_K^1$ in J_A^1 such that $K\cap \tilde{b}^{-1}M\tilde{b}=\mathcal{O}$.

Locally, we define $D(\mathcal{O})$ as followings.

DEFINITION 6. $D(\mathcal{O}_p)$ is the number of double cosets $\mathcal{N}(M_p)b_pK_p^{\times}$ in A_p^{\times} such that $K_p \cap b_p^{-1} M_p b_p = \mathcal{O}_p$.

 $D(\mathcal{O}_p)$ is the number of essentially different orders (of level \tilde{N}) of A_p in which \mathcal{O}_{p} is optimally embedded.

The number $D(\mathcal{O}_p)$ can be determined as follows.

THEOREM 4.5. Let K and A be as above and let M be an order of A with level $\tilde{N} = (q; L(2), \nu(2))$. Then we have the followings.

1.
$$p = q$$
. $D(\mathcal{O}_q) = \begin{cases} 1 & \text{if } \mathcal{O}_p \text{ is maximal in } K_p, \\ 0 & \text{otherwise.} \end{cases}$
2. $p \nmid 2q$. $D(\mathcal{O}_p) = 1$.
3. $p = 2$. $D(\mathcal{O}_2) = \begin{cases} 1 & \text{if both } K \text{ and } L(2) \text{ are ramified or both unramified,} \\ 0 & \text{if one of } K_2 \text{ and } L(2) \text{ is ramified and the other is unramified extension for a supersified extension for the other is unramified.} \end{cases}$

Proof. We prove three cases separately.

1. p = q. $K_p \cap M_p$ is the maximal order of K_p and $\mathcal{N}(M_p) = A_p^{\times}$. Thus $D(\mathcal{O}_p) = 1$ or 0 according as \mathcal{O}_p is maximal in K_p or not.

other is unramified extension field.

- 2. $p \nmid 2q$. Chevalley-Hasse-Noether implies $D(\mathcal{O}_p) = 1$ always. See [3,
- 3. p=2. We divide into three cases. First, one of K_2 and L(2) is ramified and the other is unramified extension field. In this case, there does not exists optimal embedding from K_2 into an order R_{ν} . Second, both K_2 and L(2) are unramified. By Lemma 2.2, there is a unique chain of orders, $R_{2i} \subset R_{2i-2} \subset \cdots R_0$. Hence, there is a unique order of level 2ν , i.e. $D(\mathcal{O}_2) = 1$. Finally, both K_2 and L(2) are ramified. By Lemma 2.2, if $\nu > 0$, then the exists a unique order containing \mathcal{O}_L . Hence $D(\mathcal{O}_2) = 1$.

LEMMA 4.6. Assume that $\gamma \neq \pm 1$ and suppose that $\psi_{\gamma}(x)$ is not identically zero. Let $K = \mathbb{Q}(\gamma)$. Then the support of $\psi_{\gamma}(x)$ in G consists of the disjoint union of the double cosets $\mathfrak{N}(M)\tilde{b}J_K^1$ satisfying $K \cap \tilde{b}^{-1}M\tilde{b} = \mathcal{O}_K$ for some order \mathcal{O}_K of K containing γ .

Proof. Suppose $\tilde{y} \in \text{Support } \psi_{\gamma}$. Then $\psi_{\gamma}(\tilde{y}) \neq 0 \Rightarrow \tilde{y}\gamma\tilde{y}^{-1} \in \mathfrak{U}(M) \Leftrightarrow$ $\gamma \in K \cap \tilde{y}^{-1}M\tilde{y} = \mathcal{O}_K$ for some order \mathcal{O}_K in K. Conversely, if $\gamma \in \mathcal{O}_K = K \cap \tilde{y}M\tilde{y}^{-1}$ for some $\tilde{y} \in J_A^1$, then $\tilde{y}^{-1}\gamma\tilde{y} \in \mathfrak{U}(M)$. which implies that $\psi_{\gamma}(\tilde{y}) = 1$. That is $\tilde{y} \in \text{Support } \psi_{\gamma}$.

THEOREM 4.7. Assume $\gamma \in A^{\times}$, $\gamma \notin \mathbb{Q}$ and the minimal polynomial of γ is $x^2 + sx + n$ with $s, n \in \mathcal{O}$. Finally, assume $\gamma \in \mathfrak{N}(\tilde{b}M\tilde{b}^{-1})$. Then $\mathfrak{N}(M)\tilde{b}J_K^1$ consists of the disjoint union of $E(\mathcal{O})$ translates of $\mathfrak{U}(M)\tilde{b}J_K^1$, where $E(\mathcal{O}) = \prod_{p < \infty} E(\mathcal{O}_p)$ and

$$E(\mathcal{O}_q) = \begin{cases} 1 & \text{if } q \text{ ramifies in } K, \\ 2 & \text{if } q \text{ remains prime in } K, \end{cases}$$

$$E(\mathcal{O}_2) = \begin{cases} 1 & \text{if } \nu = 0, \\ 2 & \text{if } L(2) \text{ is unramified and } \nu > 0, \\ 2^{\nu - \left[\frac{1}{2}(\nu + 1)\right]} & \text{if } L(2) \text{ is ramified and } 0 < \nu \leq 2t + 2, \\ 2^{t+2} & \text{if } L(2) \text{ is ramified and } \nu > 2t + 2, \end{cases}$$

$$E(\mathcal{O}_p) = 1 \text{ if } p \nmid 2q.$$

Proof. We will compute this locally. For a prime q, $E(\mathcal{O}_q)$ is given at Proposition 22 in [8]. If $\pi_q \in K^{\times}$, i.e., q is ramified in K, then $\mathcal{N}(R_0(L(q))) = R_0^{\times}(L(q))K^{\times}$. If q is unramified in K, then $\pi_q \notin K^{\times}$. There is no split case for q in K contained in A.

Next, for p=2, $\mathcal{N}(R_0(L(2)))=R_0^\times(L(2))K^\times$. Now assume that $\nu>0$. By Corollary 4.4, if L(2) is ramified and $1\leq \nu<2t+2$, then $|M(R_\nu)/R_\nu^\times|=2^{\nu-[\frac{1}{2}(\nu+1)]}$. Otherwise, $\mathcal{N}(R_\nu(L(2)))=R_\nu^\times(L(2))K^\times\cup \xi R_\nu^\times(L(2))K^\times$. Thus $|M(R_\nu)/R_\nu^\times|=2\cdot 2^{t+1}$. Finally, if $p\nmid 2q$, then M_p is a maximal order in A_p . Thus $E(M_p)=1$ was computed in [9], [7]. \square

THEOREM 4.8. Let M be an order of level \tilde{N} . Then

$$Mass(M) = \frac{1}{12}(q-1)\delta,$$

where
$$\delta = \begin{cases} (p^2 - p)p^{\nu - 2} & \text{if } L(2) \text{ is unramified,} \\ (p + 1)p^{\nu - 1} & \text{if } L(2) \text{ is ramified.} \end{cases}$$

Proof. See [7].
$$\Box$$

Remark. As we mentioned at the remark of Lemma 2.2, p = 2.

LEMMA 4.9. Let M be an order of level \tilde{N} and let K be a quadratic extension field of k. Then

$$\operatorname{vol}(\mathfrak{U}(M)\tilde{b}J_K^1/K^{\times}) = \frac{h(\mathcal{O})}{w(\mathcal{O})},$$

where $h(\mathcal{O})$ is the class number of locally principal \mathcal{O} ideals in K. i.e., $h(\mathcal{O}) = |J_K^1/\mathfrak{U}(\mathcal{O})K^{\times}|$ and $w(\mathcal{O}) = |U(\mathcal{O})|$. Here, $\mathfrak{U}(\mathcal{O}) = \mathfrak{U}(M) \cap J_K^1 = \mathfrak{U}(M) \cap J_K^1 = \mathfrak{U}(M)$

 $(\prod_{p<\infty} U(\mathcal{O}_p) \times K_{\infty}^{\times}) \cap J_K^1$. The volume is taken with respect to the quotient measure on J_A^1/K^{\times} .

Proof. Let
$$J_K^1 = \bigcup_{i=1}^{h(\mathcal{O})} \tilde{x}_i \mathfrak{U}(\mathcal{O}) K^{\times}$$
. Then
$$\operatorname{vol}(\mathfrak{U}(M) \tilde{b} J_K^1 / K^{\times})$$

$$= \operatorname{vol}(\tilde{b}^{-1} \mathfrak{U}(M) \tilde{b} J_K^1 / K^{\times})$$

$$= \operatorname{vol}(\bigcup_{i=1}^{h(\mathcal{O})} \tilde{x}_i \mathfrak{U}(\tilde{b}^{-1} M \tilde{b}) K^{\times})$$

$$= h(\mathcal{O}) \operatorname{vol}(\mathfrak{U}(\tilde{b}^{-1} M \tilde{b}) / \mathfrak{U}(\tilde{b}^{-1} M \tilde{b}) \cap K^{\times})$$

$$= \frac{h(\mathcal{O})}{w(\mathcal{O})}.$$

LEMMA 4.10. Let γ , K be as in Lemma 4.6 and let \mathcal{O} be a fixed order of K containing γ . Then $\Gamma(\gamma) = K^{\times}$ and the volume in $G/\Gamma(\gamma)$ of the support of $\psi_{\gamma}(x)$ attached to \mathcal{O} , that is, the sum of volumes of $\mathfrak{N}(M)\tilde{b}J_K^1/K^{\times}$ over all double cosets satisfying $K\cap \tilde{b}^{-1}M\tilde{b}=\mathcal{O}$ is $D(\mathcal{O})E(\mathcal{O})\frac{h(\mathcal{O})}{w(\mathcal{O})}$

Proof. See [8].
$$\Box$$

THEOREM 4.11. The class number $H(\tilde{N})$ of orders of level \tilde{N} is given by

$$H(\tilde{N}) = \begin{cases} \frac{1}{12}(q-1)(2^2-2)2^{\nu-2} + \frac{1}{3}\left(1 - \left(\frac{-3}{q}\right)\right) & \text{if } L(2) \text{ is unramififed,} \\ \frac{1}{12}(q-1)(2+1)2^{\nu-1} + \frac{1}{4}\left(1 + \left(\frac{-1}{q}\right)\right)\delta(L(2)) & \text{if } L(2) \text{ is ramififed,} \end{cases}$$
 where

where

$$\delta(L(2)) = \begin{cases} 2^{\nu - [\frac{1}{2}(\nu+1)]} & \text{for } \nu \le 2t+2, \\ 2^{t+1} & \text{for } \nu > 2t+2. \end{cases}$$

Here (\cdot) is the Kronecker symbol.

Proof. By Selberg trace formula, we need to compute $\int_{G/\Gamma(\gamma)} \psi_x(x) dx$ for each value of γ . The possible value of γ is by Lemma 3.3, ± 1 , a root of $x^2 + 1$ or $x^2 \pm x + 1$.

Case 1: $\gamma = 1$. $\Gamma(\gamma) = \Gamma$ implies that $\int_{G/\Gamma(\gamma)} \psi_x(x) dx = \text{vol}(G/\Gamma) = \text{Mass}(M)$. By Theorem 4.5, Mass(M) was computed.

Case 2: γ is a root of $x^2 + 1$. Let $K = \mathbb{Q}_2(\gamma)$ and assume that K is embedded in A. By Lemma 4.6, it suffices to compute the number of elements \tilde{b} satisfying $\tilde{b}^{-1}M\tilde{b}\cap K = \mathcal{O}_K$. That is, the number of optimal embeddings from γ into R_{ν} . Since $K = \mathbb{Q}_2(\gamma)$ is a ramified extension field of \mathbb{Q}_2 , if L(2) is unramified, no optimal embedding exists unless R_{ν} is a maximal order. On the other hand, if L(2) is ramified, then $D(\mathcal{O}_2)$ is given at Theorem 4.5. Hence by Lemma 4.7.

$$\begin{split} \frac{h(\mathcal{O})}{w(\mathcal{O})} &= \frac{1}{4} \\ D(\mathcal{O}_2)E(\mathcal{O}_2) &= D(\mathcal{O}_2)E(\mathcal{O}_2) \cdot \begin{cases} 2^{\nu - \left[\frac{1}{2}(\nu+1)\right]} & \text{for } \nu \leq 2t+2, \\ 2^{t+1} & \text{for } \nu > 2t+2, \end{cases} \\ D(\mathcal{O}_q)E(\mathcal{O}_q) &= 1 \cdot \left(1 + \left(\frac{-1}{q}\right)\right). \end{split}$$

Here (\cdot) is the Kronecker symbol.

Case 3: γ is a root of $x^2 \pm x + 1$. Let $K = \mathbb{Q}_2(\gamma)$. Then K is a unramified quadratic extension field of \mathbb{Q}_2 . As in the case 2, we should compute the number of optimal embeddings from K into R_{ν} where L(2) is the unramified extension field of \mathbb{Q}_2 . The number of optimal embeddings is 1. Hence, $D(\mathcal{O}_q) = 1$ and

$$\begin{array}{rcl} \frac{h(\mathcal{O})}{w(\mathcal{O})} & = & \frac{1}{6}, \\ D(\mathcal{O}_2)E(\mathcal{O}_2) & = & \delta(L(2)), \\ D(\mathcal{O}_q)E(\mathcal{O}_q) & = & 1 \cdot \left(1 - \left(\frac{-3}{q}\right)\right), \end{array}$$

where $\delta(L(2)) = 1$ if L(2) is unramified and -1 if L(2) is ramified. Here (\cdot) is the Kronecker symbol.

References

- [1] A. Atkin and J. Lehner, Hecke operators on $\Gamma_0(N)$, Math. Ann. 185 (1970), 134–160.
- [2] M. Deuring, Die An zahl der Typen von Maximalordnungen einer definitn Quaternionalgebra mit primer Grundzahl, Jber. Deutsch. Math. Verein. 54 (1950), 24-41.

- [3] M. Eichler, The basis problem for modular forms and the traces of Hecke operators, Springer-Verlag, Lecture Notes in Math. 320 (1972), 75-151.
- [4] H. Hijikata, Explicit formula of the traces of the Hecke operators for $\Gamma_0(N)$, J. Math. Soc. Japan 26 (1974), 56–82.
- [5] H. Hijikata, A. Pizer, and T. Shemanske, Orders in Quaternion Algebras, J. Reine Angew Math. 394 (1989), 59–106.
- [6] S. Jun, On the certain primitive orders J. Korean Math. Soc. 4 (1995), 473-481.
- [7] _____, Mass formula of an order over a dyadic local field, preprint.
- [8] A. Pizer, On the arithmetic of Quaternion algebras II, J. Math. Soc. Japan 28 (1976), 676-698.
- [9] $\frac{1}{\Gamma_0(N)}$, The action of the Canonical involution on Modular forms of weigh 2 on $\Gamma_0(N)$, Math. Ann. **226** (1977), 99-116.
- [10] _____, An Algorithm for computing modular forms on $\Gamma_0(N)$, J. Algebra **64** (1980), 340–390.
- [11] I. Reiner, Maximal orders, Academic Press, 1975.
- [12] T. tamagawa, On the trace formula, J. Fac. Sci. Univ. Tokyo Sec. I (1960), 363–380.
- [13] A. Weil, Basic number theory, Berlin, Hedelberg, New York, Springer, 1967.

SUNGTAE JUN, DIVISION OF MATHEMATICS AND COMPUTER SCIENCE, KONKUK UNIVERSITY, CHOONGJU 380-151, KOREA

E-mail: sjun@kku.ac.kr

Insuk Kim, Department of Mathematics Education, Wonkwang University, Iksan 570-749, Korea

E-mail: iki@wonkwang.ac.kr