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THE CLASS NUMBER OF ORDERS
IN A QUATERNION ALGEBRA
OVER A DYADIC LOCAL FIELD

SUNGTAE JUN AND INsUk KiMm*

ABSTRACT. We find the class number of orders in a quaternion
algebra over a dyadic local field.

1. Introduction

A quaternion algebra over a field F' means a semi simple algebra of
dimension 4 over k. It is known that there are three kinds of primitive
orders in quaternion algebras over a local field. An order R of a quater-
nion algebra A over a local field k is called primitive if it satisfies one
of following conditions. If A is a division algebra, R contains the full
ring of integers of a quadratic extension field of k. If A is isomorphic
to Matgxo(k), then R contains a subset which is isomorphic either to
0, @ o5 where oy, is the ring of integers in k, or to the full ring of integers
in a quadratic extension field of k. The arithmetic properties of first two
types of primitive orders were studied in [4], [5]. For the remaining type
was studied in [6] only for the nondyadic local field case. In this paper
we study the remaining type over a dyadic local field and we compute
the class number of primitive orders over a dyadic local field.

2. Orders

In this section, we summarize the arithmetic theory of a quaternion
algebra and its order.

A lattice on A is a finitely generated Z module containing a base of
A over Q. An order of A is a lattice on A which is also a subring with 1.
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The analogous definitions hold for lattices and orders in A, = A® Qp
for a prime p. '

Throughout this paper we assume that k is a dyadic local field. Let
o denote the ring of integers in k, p the maximal ideal of 0. By A(«),
we denote the discriminant of a.

Aa) = Tr(e)? — 4N(e),

where Tr and N are the trace and norm of L over k respectively, where
L is a quadratic extension field of k. If T' is an o algebra of rank 2
contained in L, then I' = 0 + oz and the discriminant of T is

A(T) = A(z) mod U?,

where U is the set of all units in o. :

Let 02 — 40 = {s2 —4n | s,n € o}. Then we consider the set of all
possible discriminants (02 — 40)/U%. Note that A} # ¢ only if o =
2p,0 < p < eoro=2e+1 where e = ordg(2). Let

o0 e
A= Jas={Uas, | ussa
o=0 p=0

Then we know T' is a maxima) order of a quadratic extension field of k
if and only if A(T) e A*. Ife>0and 1 <p<e
A;p — 7I_2p(U2 + 7T2e—2p+1U)/U2.

There is a bijective correspondence between elements of A* and qua-
dratic extension fields of k given by A(T') — I'® of for A(I'), an element
of A*.

Thus we can classify all quadratic extension fields of a dyadic local
field k as follows: A} contains one point which corresponds to a unique
unramified quadratic extension of k and

Al = A2y /U
contains 2¢2 points representatives where ¢ = [o0/p|.
DEFINITION 1. Let L be a quadratic extension of k. We define
t = t(L) = ordg(A(L)) — 1.

REMARK. Note that if L is an unramified extension field of k, then
t = —1. On the other hand, if L is a ramified extension field of a dyadic
field k, then ¢ > 0 (see 1.3 in [5]).
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Let A be a rational quaternion algebra ramified precisely at the odd
prime ¢ and oco. That is, A; = A® Q4 and Axc = A ® R are division
algebras. Otherwise, A, = A ® Q, is isomorphic to a 2 x 2 matrix
algebra, M,(Q,) for a finite prime p # g (see [6]).

Fix a prime p # ¢ and let L be a quadratic extension field of Q,. Then

a B
g a .
Let{(% g) a,ﬂeL}=L+§L,Where£:<$ (1)>.Then§a=

@, 82 =1and € = -¢.
Hence, we can define the norm of an element in A as its determinant.
Let o and p be the ring of integers and the prime of k. Let L be a
quadratic extension field of k¥ and let Py, be the prime ideal of O, which
is the ring of integers in L. Finally let A be the discriminant of L over
k. In [7], we have computed that the possibilities of an order, R of A
containing Or. We state the results in the following theorem.

a,B € L} is a quaternion algebra over Q, (see [7], [11]).

THEOREM 2.1. Let the notations be as above. If an order R of As
contains Oy, then R is one of the followings.
(i) If2 is a unramified prime in L, R = O + £Py.
(i) If2 is a ramified prime in L, R= O + (1 + )P~ or
R, =0p+(1- {)PZ"t_l, where t = ord(A).
Here, v is a nonnegative integer.

Proof. See [T7]. O

DEFINITION 2. Let A be a rational quaternion algebra ramified pre-
cisely at one finite prime ¢ and co. An order M of A has level N =
(¢ L(2),v) if

(i) M ® Z, is the maximal order of A ® Q, for an odd prime p,

(ii) there exists a quadratic extension field L(2) of Q2 and a nonneg-
ative integer v (which is even if L(2) is unramified) such that an
order of A containing the ring of integers of L(2) is either R, or
R,.

If L is ramified, then an order of As is either R, or R,. The relation
between R, and R, is as follows. Let e = ordy 2. Then ord; 2 = 2e.
Thus if t < 2e, then Ry = Ry. If t = 2e, Ry # R and Ry = R; (see
remark 1.8 in [4]).

Thus we have the following lemma.

LEMMA 2.2. If R, is an order of Ay containing the ring of integers of
L, then
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1. if L is unramified,

Ry (L) C Ray—2 C -+ C Ry,
2. if L is ramified and t < 2e,

R,(L)C R,_1 C--- C Ry,

3. if L is ramified and t = 2e,

R,(LYCR,.1C---Ri1CRHRy

C Ro.

REMARK. The level N can be generalized to arbitrary primes without

any difficulties. In this paper, we consider only p = 2 case for the
computational convenience.

DEFINITION 3. Let M be an order of level N in A. A left M ideal I
is a lattice on A such that I, = Mpa, (for some a, € Ay) for all p < co.
Two left M ideals I and J are said to belong to the same class if I = Ja
for some a € A*. One has the analogous definition for right M ideals.

DEFINITION 4. The class number of the left ideals for any order M
of level N is the number of distinct classes of such ideals. We denote
this by H(N).

REMARK. Let A be a quaternion algebra and let M be any order of
A. The ideal group of J4 of A4 is

Ja = {& = (ap) € HA;,(| ap € U(M,) for almost all p },
P

where U(M,) is the set of all units in M,,.

Here the product is over all primes, finite and infinite. Note that
since two orders M and N of A, M, = N, for almost all p, J4 is
independent of the particular used in this definition. J, is a locally
compact group with the topology induced by the product topology on
the open set Hpe s Ay Tles U (Mp), where S ranges over all finite subset
of primes containing co. If @ € J4, we define the volume of @ as vol(a@) =
[1,|N(ap)|p where |- |, is normalized such that Iplp = 111 for p < o0 and
| |oo is the ordinary absolute value in R. Let J} = {a € J4 | vol(a) = 1}
and embed A* C J} along the diagonal. Finally, if M is an any order
of A, let W(M) = {a'€ J} | ap € U(M,) for all p < oo}.

PROPOSITION 2.3. Let M be any order of level N in A. Then
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1. A is a discrete subgroup of J}.
2. JY/A* is compact.
3. $4(M) is an open compact subgroup of J}.

Proof. See Weil{13). O

PROPOSITION 2.4. The double coset 4(M)\J} /A are in 1-1 corre-
spondence with the ideal classes of left M ideals.

Proof. If J} = iIi1 (M)a;A*, then Ma;, i=1,---,H, represent
the distinct left M ideal classes. [

PROPOSITION 2.5. J}‘ acts transitively(by conjugation) on orders of
level N in A.

Proof. The action is for @ € ']}1 and M an order of level N: M «
{Mp} — {ay'Mpap} < M’ and we write M’ = a~'Ma. The action is
obviously transitive. [

3. The Selberg trace formula

Let G be a locally compact group with an open compact subgroup U
and a discrete subgroup I' with G/T' compact. Then G is unimodular
(i.e., every left Haar measure is right Haar measure) and we normalize
Haar measure dz on G such that f;dz = 1. Let L(G,U) be the set
of complex valued continuous functions F' on G with compact support
such that F(ugu’) = F(g) for all g € G,u,v’ € U. Let L(U\G/T) be
the set of all complex valued continuous functions f on G such that
flugy) = f(g) forallu € U,g € G,y € T, For any v € T', let {7} denote
the conjugacy class of v in T and let I'(y) denote the centralizer of ~y in
[. For a discrete subgroup S of G, we also denote by dz the invariant
quotient measure on G/, i.e., if f is continuous with compact support

on G, then
/Gf(sv)dav = /G/S (Z f(xs)) dz.

s€S
Any F € L(U,G) induces a linear transformation on the finite dimen-
sional complex vector space L(U\G/T') by convolution,

(F(f))(@) = (F* )(@) = /G Flay™)f(w)dy

and its trace is given by
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PROPOSITION 3.1. (Selberg Trace Formula).

Trace F = Z/ Py (z)d,

G/I'(v)

where 1, (z) = F(zyz~!) and the sum is over representatives of all
conjugacy classes in I'.

Proof. See [12]. O
For the next lemmas, we let G = J4, U = U(M) and T’ = A*.

LEMMA 3.2. Let F be the characteristic function on U. Let dx be
the measure on G normalized so that [, dz = 1. Then

NZ/

{v} /MO
where 1, (z) = F(zyz™!).
Proof. Tt is easy to see that F induces the identity map on L(U\G/T).

Thus Trace F' = dim L(U\G/T) = [U\G/T|. By Proposition 2.4, Trace F’
is the class number of order M of level N. O

LEMMA 3.3. If
'(,D»Y(CE)d.’E 7é Oa
G/T(7)
then v = %1, or has a minimal polynomial, x> 1 or 2> £ z + 1.

Proof. Let = € G. If 9, (x) # 0, then F(zyz~1) # 0. That is,
zyz e UY(M) & v e Yz Mz) N A = Y(2~ M2).

Thus ~ is a unit of some order of A. If v belongs to Q, then v = £1.
If v ¢ Q, N(v) is a unit in Z. The minimal polynomial of v is f(z) =
z? — sz +n where s € Z, n = 1. If f(z) had a real root, it would mean
that R is a splitting field for A. Thus s> ~4n < 0,i.e., n=1and s =0
or s ==+l1. O

4. The class number

Let A be a rational quaternion algebra ramified precisely at the odd
prime ¢ and co and let M be the order in a quaternion algebra of N =
(g; L(2),v) with v > 1, where L(2) is the quadratic extension field of Q.
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REMARK. We define the normalizer of an order M as
NM)={aecJia'Ma= M}
locally, N (Mp) = {ap € AX| ay' Myap, = My}.

In order to compute the normalizer of orders, we first compute the
normalizer of orders locally. For the nondyadic case, the normalizer of
orders were computed in [6], [8]. Here, we will compute the only dyadic
local field case, i.e. p = 2 case.

Recall the definition of orders, R,. For the computational conve-
nience, we introduce a new notation :

M(R,) ={z € Ry(L)* | = 'R,z = R,}.

THEOREM 4.1. Let L be a unramified quadratic extension field of k
and k = Qo. Then for an order of Ay = A® k, R, (L), we have

M(R,) = {RS ’
" |RXUERY  forv > 0.
Proof. v = 0 case is trivial. Hence assume that v > 0. Let a + &8 €
R,(Ly=0r +&PY and g € R} = (O +£01)*.
9(a+€0)g = (v +£0) - (a +£B) - (v + £0)
= (ay + B8 + &(ad + £7))) - (T — £5)
= vy + B8 — b8 — Byb + (o6 + BY° — T — 367)
€ O +&Py.
a6 + By* — ay6 — 362 € PY implies that ordi((ew — @)76) > v. Hence

either ord;(6) > v and v € OF, or ordr(y) > v and § € OF. This
implies that M (R, (L)) = R,(L)* UER,(L)*. O

COROLLARY 4.2. Let L be a unramified quadratic extension field of k
and k = Q2. Then M(R,)/R} =~ {1,£} as a set theoretical equivalence
for v > 0.

Proof. This is immediate from the above theorem. ' O

THEOREM 4.3. Let L be a ramified quadratic extension field of k and
k = Q,. Then for an order of A, = A® k, R,(L), we have
R} ifv=0,
X -
M(R,) = R[%(u+1)] fO<v<2t+2,
Ry, JUER; , | if2t+2<uv,

where [z] is the largest integer not greater than z.
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Proof. If v =0, Ry is a maximal order. M(Rp) = Ry clear from the
definition.

Now assume that L is ramified. Let ¢ € M(R,). Then gRig™?
contains R, and gRig~' is the second largest order containing R,,
which implies gR,g~! = R,. Without loss of generality, we assume
that M(R,) C M(R;) =R}. Let g=c+d+éde€ R anda+b+&be
R, =0+ (1+ &P L

gla+£B)g
=(c+d+&d) - (a+b+6b)-(c+d+&d)
=(c+d+&d) - (a+b+&b):(c+d—&d)
= ((c+d)(a+b)+bd+&((a+b)d+b(c+d) - (c+d—&d)
= N(c+d)(a+b) + bd(c+d) — (a+b)dd — b(c + d)d
+&((a+b)(c+ d)d + b(c+ d)? — (c+ d)(a + b)d — bd?)
€O+ (1+&PL
Thus we need two conditions,

(a+b)(c+ d)d+bc+d)? — (c+d)(a+b)d — bd* € PY7+7!

and
N(c+ d)(a +b) +bd(c+ d) — (a+ b)dd — b(c + d)d
—{(a+b)(c+d)d+bc+ d)* — (c+d)(a+b)d—bd’} € Of.
For the first one, we have the followings.
(a + b)(c + d)d + b(c + d)? — (c+ d)(a + b)d — bd?
= ((a+b) — (a+b))(c+ d)d + b(c + d)* — bd?
— (a—a)(c T d)d+ (b—b)(c+ d)d + be® + 2bcd + bd” — bd?
— ((a—a)(cF d)d + (b~ b)ed + bc® + 2bed + bd" — bd? + (b — b)dd
= ((a — @)(c+ d)d + (b — b)ed + bc® + 2bed + (bd — bd)(d + d).
Since d € P;t, Tr(d) = d +d € Op. Hence, b € Py""! implies that

ordr((a —@)(c+d)d) =t +1+2ordz(d) > v —t — 1 is necessary. That
is, ordr(d) > v — ¢t — 1 and the second condition is easily satisfied if
ordy(d) > jv —t — 1. Thus M(R,(L)) = Rpy,.41y)(L), where [a] is the
largest integer not greater than z.

_ pX
MR = Ry
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On the other hand, if d € Of ie. ordp(d) > 2t + 2, then ordy({a —
a)(c+d)d) =t+1+ordy(d) > v—t—1. Thatisd e Py 22 Since
£e M(R)) forevery v >t +1,
M(R,))=R) , {UER,_, ;. a
COROLLARY 4.4. Let L be a ramified quadratic extension field of k
and k = Q,. Then for an order of A2 = A®k, R,(L),
{1} ifv =0,
X X .
R}, 1/R;_, - xR, _{/R} if2t+2 <v,
where = is the set theoretical bijective relation.
Proof. v = 0 case is trivial. Assume that v > 0. By Theorem 4.3,
M(R,)/R} = R[>< L(41)] /Rf,<

X X X X
Bl /B~ By /By * By /B9

and inductively, we can prove

M(R,)/R ~ B} X RSB

Lw+1)] /R[ (u+1)]+1
for 0 < v < 2t + 2. Similarly,

M(R,)/R} = R)_, {/R; = R}_,_{/R}_¢x -~ x R}_{/R}
for v > 2t 4 2. O

REMARK. If k = Qy, |R} /R, ;| = 2 was proved for each v > 0 (see
[7]). This will be used in Theorem 4.7 later.

DEFINITION 5. Let K be a quadratic field extension of Q contained
in A. If O is an order of K and M is an order of A. O is optimally
embedded in M if KNM =0O.

REMARK. It is well known that
KNnM=0&K,NM,=0, forallp<oo.

Any order M’ of level N can be written as M’ = b='Mb with some b €
JL, where M is the canonical order of level N. Suppose KNb~tMb = O.
If ¢ € M(M), then K Nb~1¢"1Méb = O. Hence it suffices to consider
b mod M(M). Further, if @ € Jk, then we have K Na~'b~*Mba = O.
Thus D(O) will denote that the number of double cosets M(M)bJ} in
J} such that K nb~'Mb = O.
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Locally, we define D(O) as followings.

DEFINITION 6. D(Q,) is the number of double cosets N (Mp)bp K
in AX such that K, N b, Myb, = Op.
D(0,) is the number of essentially different orders (of level N) of A,

in which O, is optimally embedded.
The number D(0O,) can be determined as follows.

THEOREM 4.5. Let K and A be as above and let M be an order of
A with level N = (¢; L(2),v(2)). Then we have the followings.

1 if O, is maximal in K.
1. p=gq. D(Oy) = P P
p=4g. D(O,) 0 otherwise.

2. pt2q. D(Op)=1.

1 if both K and L(2) are ramified or
both unramified,

0 if one of K9 and L(2) is ramified and
the other is unramified extension field.

3. p=2. D(Oy) =

Proof. We prove three cases separately.

1. p = q. KpN M, is the maximal order of K; and N (Mp) = Ay .
Thus D(Op) =1 or 0 according as O, is maximal in K, or not.

2. pt2¢. Chevalley-Hasse-Noether implies D(Op) = 1 always. See [3,
p.97].

3. p = 2. We divide into three cases. First, one of K7 and L(2) is
ramified and the other is unramified extension field. In this case,
there does not exists optimal embedding from K, into an order
R,. Second, both K3 and L(2) are unramified. By Lemma 2.2,
there is a unique chain of orders, Ry; C Ra;—2 C -+ Rp. Hence,
there is a unique order of level 2v, i.e. D(O2) = 1. Finally, both
K> and L(2) are ramified. By Lemma 2.2, if v > 0, then the exists
a unique order containing Or. Hence D(O7) = 1. O

LEMMA 4.6. Assume that v # +1 and suppose that .,(x) is not
identically zero. Let K = Q(v). Then the support of ¢¥(x) in G
consists of the disjoint union of the double cosets M(M )EJ}{ satisfying
KNb-1Mb= Ok for some order Ok of K containing ~.

Proof. Suppose §j € Support 1,. Then 1, (§) # 0= §v§~ ' € (M) &
v € KNj My = Ok for some order Ok in K. Conversely, if
v € O = KNgMj~! for some § € J}, then 7 1v§ € U(M). which
implies that ¢~ (§) = 1. That is § € Support ¢,. |
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THEOREM 4.7. Assume y € A*, v ¢ Q and the minimal polynomial
of y 1's~:c2 + sz +n with s,n € O. Finally, assume v € W(bMb™1). Then
NM(M)bJ) consists of the disjoint union of E(Q) translates of 4(M)bJ,
where E(O) = [[,<. E(Op) and

1 if ¢ ramifies in K,
E (Oq) = . . . .
2  if ¢ remains prime in K,

1 ifv=0,

E(0y) = 2 1 if L(2) is unramified and v > 0,
ov=[z(+D]  if (2) is ramified and 0 < v < 2t + 2,
2t+2 if L(2) is ramified and v > 2t +2,

E(0p) =1ifpt2q.

Proof. We will compute this locally. For a prime g, E(0,) is given
at Proposition 22 in [8]. If 1, € KX, ie., ¢ is ramified in K, then
N(Ro(L(q))) = R (L(q))K™. If q is unramified in K, then 7, ¢ K*.
There is no split case for ¢ in K contained in A.

Next, for p = 2, N(Ro(L(2))) = R (L(2))K*. Now assume that
v > 0. By Corollary 4.4, if L(2) is ramified and 1 < v < 2¢ + 2, then
IM(R,)/RY| = 2~ 2¢+D] Otherwise, N'(R,(L(2))) = RX(L(2))K* U
ERX(L(2))K*. Thus |M(R,)/R}|=2-2t*1. Finally, if p { 2q, then M,
is a maximal order in Ap. Thus E(M,) = 1 was computed in [9}, [7]. O

THEOREM 4.8. Let M be an order of level N. Then

1
= ﬁ(q - 1)5’

where § = (P®* —p)p*~% if L(2) is unramified,
(p+1)p”~1  if L(2) is ramified.

Mass(M)

Proof. See [T7]. O
REMARK. As we mentioned at the remark of Lemma 2.2, p = 2.
LEMMA 4.9. Let M be an order of level N and let K be a quadratic

extension field of k. Then

h(O)

w(0)’

where h(Q) is the class number of locally principal O ideals in K. i.e.,
h(0) = | Tk /MO)K*| and w(0O) = |U(O)|. Here, W(O) = U M)NJ} =

vol(U(M)bJ% /K>) =
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(Il <oo U(Op) x KZ) N J%. The volume is taken with respect to the
quotient measure on J}/K*.

Proof. Let JL = UMY #4(O)K*. Then

vol(S(M)bJL /K*)
= vol(iflu( WoJk /KX)

= vol( U MBI MB)K ™)

= h(O) vol(il( b~ Mb)/U(b"IMb) N KX)
hO)

= —Z. O
w(O)

LEMMA 4.10. Let v, K be as in Lemma 4.6 and let O be a fixed
order of K containing y. Then ['(y) = K* and the volume in G/T(y)
of the support of v.,(z) attached to O, that is, the sum of volumes
of M(M)bJL/K* over all double cosets satisfying K Nb"*Mb = O is

D(0)E(0) X3}
Proof. See [8]. O

THEOREM 4.11. The class number H(N) of orders of level N is given

{
v 1o ()
if L(2) is unramififed,

La- e+ + 3 (1+(F)) e
if L(2) is ram1ﬁfed

\
where
=l for y < 2t + 2,

8(L(2)) = {2t+1 forv > 2t+2.

Here (-) is the Kronecker symbol.

Proof. By Selberg trace formula, we need to compute fG T(y) Yy (z)dx
for each value of «v. The possible value of v is by Lemma 3.3, £1, a root
ofz2+1lorz?+z+1.
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Case 1: v = 1. I(y) = I'implies that [ .,y Ye(z)dz = vol(G/T) =
Mass(M). By Theorem 4.5, Mass(M) was computed.

Case 2: v is a root of 22 4+ 1. Let K = Q2(7y) and assume that K is
embedded in A. By Lemma 4.6, it suffices to compute the number
of elements b satisfying b~'MbN K = Ok. That is, the number of
optimal embeddings from v into R,,. Since K = Q2(7) is a ramified
extension field of Qo, if L(2) is unramified, no optimal embedding
exists unless R, is a maximal order. On the other hand, if L(2) is
ramified, then D(Qs) is given at Theorem 4.5. Hence by Lemma
4.7,

RO) _ 1
w(O)

=D for y < 2t 42,
b+t for v > 2t + 2,

D(O,)E(0,) = 1-(1+(1q1>>.

Here (-) is the Kronecker symbol.

Case 3: yisaroot of 22 + 2+ 1. Let K = Qz(y). Then K is a
unramified quadratic extension field of Q3. As in the case 2, we
should compute the number of optimal embeddings from K into
R, where L(2) is the unramified extension field of Q2. The number
of optimal embeddings is 1. Hence, D(Oy) =1 and

D(O2)E(Os) = D(Oz)E(Oz)'{

o) _ 1

w(0) 6’
D(02)E(O2) = 6(L(2)),
oo - o (2))

where 6(L(2)) = 1 if L(2) is unramified and —1 if L(2) is ramified.
Here () is the Kronecker symbol. a
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