Effect of NMDA Receptor on Analgesic Effect of Bovine Milk-derived Lactoferrin (BLF)

우유속 락토페린의 NMDA 수용체를 통한 진통효과

  • Jeon, Yong-Joon (Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Yun, Jae-Suk (Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Lim, Hwa-Kyung (Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Park, Ki-Suk (Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Na, Han-Kang (Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Kim, Dong-Sup (Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Kim, Joo-il (Pharmacological Research Department, National Institute of Toxicological Research) ;
  • Yoon, Yea-Chang (Department of Dairy Science Graduate School of Kon-kuk University) ;
  • Choi, Ki Hwan (Pharmacological Research Department, National Institute of Toxicological Research)
  • 전용준 (국립독성연구원 약리연구부) ;
  • 윤재석 (국립독성연구원 약리연구부) ;
  • 임화경 (국립독성연구원 약리연구부) ;
  • 박기숙 (국립독성연구원 약리연구부) ;
  • 나한광 (국립독성연구원 약리연구부) ;
  • 김동섭 (국립독성연구원 약리연구부) ;
  • 김주일 (국립독성연구원 약리연구부) ;
  • 윤여창 (건국대학교 자연대학) ;
  • 최기환 (국립독성연구원 약리연구부)
  • Published : 2005.10.01

Abstract

Lactoferrin is a multifunctional protein that is found in milk, neutrophils, and other biological fluids, and its receptors have also been identified in the central nervous system. Recently, it was reported that bovine milk-derived lacto­ferrin (BLF) produced analgesia via a $\mu$-opioid receptor-mediated response in the spinal cord. However the precise mech­anism of this analgesic effect is remains unclear. In Randall-Selitto paw pressure study, each single administration of morphine (10 mg/kg) and BLF (50, 100 and 200 mg/kg) induced analgesia, however, NMDA receptor antagonist MK-801 (0.1, 0.2 and 0.3 mg/kg), inhibited analgesia induced by BLF (100 mg/kg). Intracerebroventricular infusion (I.C.V.) of N­methyl-D-aspartic acid (NMDA) ($0.3\;{\mu}g/8.0\;{\mu}l/hr/day$), as a NMDA receptor agonist, reversed inhibition of MK-801 (0.3 mg/kg) on analgesia induced by BLF (100 mg/kg). These results suggest that BLF have analgesic effect, through NMDA recep­tor activation.

Keywords

References

  1. Yaksh, T. L. : Tolerance: Factors involved in changes in the dose-effect relationship with chronic drug exposure. In: Towards a New Pharmacotherapy of Pain (Basbaum, A. I., Bessan, J.-M., Eds.), Wiley, Chichester, UK, p. 157 (1991)
  2. Chung, M. W, Lim, H.-K., Jeon, Y.-J., Kim, H. J., Park, I.-S., Oh, W-Y., Wang, S.-Y., Park, Y., Kang, J.-H., Kim, D.-S., Kim, J.-I., Oh, S. and Choi, K. H. : The development of tolerance to and dependence on morphine are reduced by co-administration of nalbuphine in rat. Biochem Cell Biol. 80, 1 (2002) https://doi.org/10.1139/o01-212
  3. Brock, J. H. : The physiology of lactoferrin. Yakhak Hoeji 46, 276 (2002)
  4. Faucheux, B. A., Nillesse, N., Damier, P., Spik, G., Mouatt-Prigent, A., Pierce, A., Leveugle, B., Kubis, N., Hauw, J. J. and Agid, Y. L. : Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc Natl Acad Sci USA 92, 9603 (1995)
  5. Leveugle, B., Faucheux, B. A., Bouras, C., Nillesse, N., Spik, G., Hirsch, E. C., Agid, Y. and Hof, P. R. : Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson's disease cases. Acta Neuropathol. (Berl) 91, 566 (1996) https://doi.org/10.1007/s004010050468
  6. Maffei, F. A., Heine, R. P., Whalen, M. J., Mortimer, L. F. and Carcillo, J. A. : Levels of antimicrobial molecules defensin and lactoferrin are elevated in the cerebrospinal fluid of children with meningitis. Pediatrics. 103, 987 (1999) https://doi.org/10.1542/peds.103.5.987
  7. Hayashida, K., Takeuchi, T., Shimizu, H., Ando, K. and Harada, E. : Novel function of bovine milk-derived lactoferrin on antinociception mediated by -opioid receptor in the rat spinal cord. Brain Res. 965, 239 (2003) https://doi.org/10.1016/S0006-8993(02)04207-5
  8. Hayashida, K., Takeuchi, T., Shimizu, H., Ando, K. and Harada, E. : Lactoferrin enhances opioid-mediated analgesia via nitric oxide in the rat spinal cord. Am. J Physiol Regul Integr Comp Physiol. 285, 306 (2003) https://doi.org/10.1152/ajpregu.00760.2002
  9. Fillebeen, C., Ruchoux, M. M., Mitchell, V., Vincent, S., Benaissa, M. and Pierce, A. : Lactoferrin is synthesized by activated microglia in the human substantia nigra and its synthesis by the human microglial CHME cell line is upregulated by tumor necrosis factor alpha or 1-methyl-4-phenylpy-ridinium treatment. Brain Res Mol Brain Res. 96, 103 (2001) https://doi.org/10.1016/S0169-328X(01)00216-9
  10. Hayashida, K., Takeuchi, T., Ozaki, T., Shimizu, H., Ando, K., Miyamoto, A. and Harada, E. : Bovine lactoferrin has a nitric oxide-dependent hypotensive effect in rats. Am. J Physiol. Regul. Integr Comp. Physiol. 286, 359 (2004) https://doi.org/10.1152/ajpregu.00214.2003
  11. Kamemori, N., Takeuchi, T., Hayashida, K and Harada, E. : Suppressive effects of milk-derived lactoferrin on psychological stress in adult rats. Brain Res. 10;1029(1), 34 (2004) https://doi.org/10.1016/j.brainres.2004.09.015
  12. Garthwaite, J., Garthwaite, G., Palmer, R. M. and Moncada, S. : NMDA receptor activation induces nitric oxide synthesis from arginine in rat brain slices. Eur. J Pharmacol. 172, 413 (1989) https://doi.org/10.1016/0922-4106(89)90023-0
  13. Garthwaite, J. : Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14, 60 (1991) https://doi.org/10.1016/0166-2236(91)90022-M
  14. Millan, M. J. : Descending control of pain. Prog. Neurobiol. 66, 355 (2002) https://doi.org/10.1016/S0301-0082(02)00009-6
  15. Fields, H. L. and Basbaum, A. I. : Central nervous system mechanisms of pain modulation. In: Wall, P. D., Melzack, R. (Eds.), Textbook of Pain, 4th Edition. Churchill Livingston, Edinburgh 309-29 (1999)
  16. Somogy,J. and Llewellyn-Smith, I.J. : Patterns of colocalization of GABA, glutamate and glycine immunoreactivities in terminals that synapse on dendrites of noradrenergic neurons in rat locus coeruleus. Eur. J. Neurosci. 14, 219 (2001) https://doi.org/10.1046/j.0953-816x.2001.01638.x
  17. Yaksh, T. L. : Central pharmacology of nociceptive transmission. In: Wall, P. D. and Melzack, R. (Eds.), Textbook of Pain, 4th Edition. Churchill Livingston, Edinburgh. 253-308 (1999a)
  18. Kawabata, A., Fukuzumi, Y., Fukushima, Y. and Takagi, H. : Antinociceptive effect of L-arginine on the carrageenin-induced hyperalgesia of the rat: possible involvement of central opioidergic systems. Eur. J. Pharmacol. 21, 153 (1992)
  19. Kayer, V. and Guilbaud, G. : The analgesic effects kof morphine, but not those of the enkephalinase inhibitor thiorphan, and enhanced in arthritic rats. Brain Res. 267, 131 (1983) https://doi.org/10.1016/0006-8993(83)91046-6
  20. Sharma, A. C., Kulkarni, S. K. and Nayar, U. : Effect of NMD-Areceptor ligands on neocortical and hippocampal EEG activity of rat brain. Indian J. Exp. Biol. 29, 744 (1991)
  21. Millan, M. J. : The role of descending noradrenergic and serotoninergic pathways in the modulation of nociception: focus on receptor multiplicity. In: Dickenson, A. and Besson, J. M. (Eds.), The Pharmacology of Pain. Handbook of Experimental Pharmacology. 130 Springer, Berlin. 385-446 (1997)
  22. Choe, H., Choi, Y. S., Kim, Y. H., Ko, S. H., Choi, H. G., Han, Y. J. and Song, H. S. : Epidural morphine plus ketamine for upper abdominal surgery: improved analgesia from preincisional versus postincisional administration. Anesth. Anal. 84, 560 (1997) https://doi.org/10.1097/00000539-199705000-00009
  23. Abdel-Ghaffar, M. E., Abdulatif, M., Al-Ghamdi, A., Mowafi, H. and Anwar, A. : Epidural ketamine reduces postoperative epidural PCA consumption of fentanyl/bupivacaine. Can. J. Anaesth. 45, 103 (1998) https://doi.org/10.1007/BF03013246
  24. Himmelseher, S., Ziegler-Pitharnitsis, D., Argiriadou, H., Martin, J., Jelen-Esselborn, S. and Kocks, E. : Small-dose S(+)-ketamine reduces postoperative pain when applied with ropivacaine in epidural anesthesia for total knee arthroplasty. Anesth. Anal. 92, 1290 (2001)
  25. Cheng, Z. F., Fields, H. L. and Heinricher, M. M. : Morphine microinjected into the periaqueductal gray has differential effects on 3 classes of medullary neurons. Brain Res. 375, 57 (1986) https://doi.org/10.1016/0006-8993(86)90958-3
  26. Osborne, P. B., Vaughan, C. W., Wilson, H. I. and Christie, M. J. : Opioid inhibition of rat periaqueductal grey neurones with identified projections to rostral ventromedial medulla in vitro. J. Physiol. 490, 383 (1996) https://doi.org/10.1113/jphysiol.1996.sp021152