The Removal of Organics and Nitrogen with Step Feed Ratio Change into the Anoxic and Anaerobic reactor in Advanced Sewage Treatment process Using Nonsurface-modified and Surface-modified Media Biofilm

비개질/개질 생물막을 이용한 오수고도처리공정에서 혐기조와 무산소조의 원수 분배율에 따른 유기물 및 질소 제거

  • Seon, Yong-Ho (Department of Environmental Engineering, Sangji University)
  • 선용호 (상지대학교 환경공학과)
  • Published : 2005.08.01

Abstract

This study was accomplished using attached $A^2/O$ process that contains nonsurface-modified and surface-modified polyethylene media inside the Anaerobic/Anoxic, Oxic tank, respectively. We could make the hydrophobic polyethylene media have hydrophilic characteristics by radiating ion beam on the surface of the media. The objectives of this study is to investigate the removal efficiencies of the organics and nitrogen when the step feed ratio of raw wastewater into anaerobic and anoxic tank is changed. In this case, we assumed that the denitrification rate can be improved because the nitrifiers in anoxic tank can perform denitrification using RBDCOD instead of artificial carbon sources (for example, methanol, etc.). The wastewater injection rate into anaerobic/anoxic tank was set up by the ratio of 10 : 0, 9 : 1, 8 : 2, 6 : 4, and the results of BOD removal efficiency showed similar trends with $93.3\%,\;92.6\%,\;92.4\%\;and\;91.6\%$, respectively. But the BOD removal efficiency (utilization of the organics) in the anoxic tank was in the order of 9 : 1 $(84.8\%)$, 10 : 0 $(77.0\%)$, 8 : 2 $(75.3\%)$, and 6 : 4 $(61.1\%)$. The T-N removal efficiency was most high when the ratio is 9 : 1 $(67.4\%)$, and other conditions, 10 : 0, 8 : 2, 6 : 4, showed $61.3(\%),\;60.7\%,\;55.5\%$, respectively; the ratio 6 : 4 was found to be lowest T-N removal efficiency, lower than the ratio 9 : 1 by $12\%$. Though the nitrification rate of the ratio 10 : 0, 9 : 1, and 8 : 2 showed similar levels, the ratio 6 : 4 showed considerable inhibition of nitrification, ammonia was the great portion of the effluent T-N. The advantages of this process is that this process is cost-saving, and non-toxic methods than injecting the artificial carbon source.

본 연구는 고정 생물막을 이용한 혐기/무산소/호기 공정으로 구성된 반응기에서 폴리에틸렌 재질의 표면을 이온빔으로 조사하여 소수성 표면을 친수성으로 만든 표면개질담체를 호기조의 여재로 사용하고 혐기/무산소조의 여재로는 표면 개질을 하지 않은 담체를 사용하여, 외부 탄소원 대신 원수내의 RBDCOD를 탄소원으로 이용하고자 혐기조와 무산소조에 원수를 분할 주입하였을 때 나타나는 유기물 및 T-N 제거 특성을 알아보았다. 혐기/무산소조로의 원수 분배율이 각각 10 : 0, 9 : 1, 8 : 2, 6 : 4로 설정하였으며, 각각의 분배율에 대하여 $93.3\%,\;92.6\%,\;92.4\%,\;91.6\%$$BOD_5$ 제거율 (유기물의 제거능)을 보였다. 하지만 무산소조까지의 $BOD_5$ 제거율(유기물 이용능)은 9 : 1에서 $84.8\%$로 가장 높은 것으로 나타났으며, 분배율 10 : 0, 8 : 2는 각각 $77.0\%,\;75.3\%$로서 거의 비슷한 수준이었고, 분배율 6 : 4 경우에 $61.1\%$로 가장 낮은 수치를 나타내었다. T-N 제거율은 9 : 1의 분배율로 분할하였을 때가 $67.4\%$로 가장 제거 효율이 높았으며, 분배율 10 : 0, 8 : 2 경우는 각각 $61.3\%,\;60.7\%$로 비슷한 경향을 보였으나 분배율을 6 : 4로 하였을 때는 $55.5\%$의 제거율을 나타내 분배율 9 : 1의 경우와는 약 $12\%$의 차이를 보였다. 또한 10 : 0, 9 : 1, 8 : 2의 분배율에서는 질산화가 거의 비슷한 수준으로 발생하였지만, 6 : 4로 주입하였을 경우에는 질산화의 저해가 나타나고, 방류수 중의 대부분의 질소성분이 암모니아 성분으로 방류되었다. 이 공정에서 탄소원으로 생하수를 이용하는 것이 메탄올과 같은 독성 탄소원에 비해 독성을 지니지 않고 약품비용이 들지 않는다는 측면에서 유리할 것으로 사료된다.

Keywords

References

  1. Edward A. L.(1993), Aquatic pollution, 2nd ed., p.55, John Wiley & Sons, Inc., New York
  2. Ministry of Environment (2002), Statistics of Sewerage, p.475, Ministry of Environment, Seoul
  3. Metcalf & Eddy (1993), Wastewater Engineering : Treatment, disposal, reuse, 3rd ed., pp691-694, McGraw-Hill, New York
  4. Jang, A, H. S. Kim, and I. S. Kim (2000), Effect of Nitrate and Nitrite Load on Denitrification Reaction in Anoxic Biofilm Reactor, J. of KSEE 22(9), 1617-1625
  5. Yang, D. C., J. H. Kim, and Y. J. Y (1997), Development of Support by Chemical Modification for the Immobilization of Activated Sludge, Hwahak Konghak 35(1), 129-134
  6. Han, S., Y. H. Seon, and S. K. Koh (2002), Microbe Adhesion and Organic Removal from Synthetic Wastewater Treatment using Polypropylene Media Modified by Ion-Assisted Reactions, Korean J. Biotechnol. Bioeng. 17(3), 235-240
  7. EPA (1993), Manual Nitrogen Control, EPA/625/R-93/010
  8. Ministry of Environment (2002), Korean Standard Methods for the Examination of Water and Wastewater, p.691, Dong Hwa Technology Publishing Co., Seoul
  9. APHA (1998), Standard Methods for the Examination of Water and Wastewater, 20th ed., p.5-17, American Public Health Association, Washington DC
  10. Welt, B. and W. Rauch (2003), The Role of Inorganic Carbon Limitation in Biological Nitrogen Removal of Extremely Annnonia Concentrated Wastewater, Wat. Res. 37, 1100-1110 https://doi.org/10.1016/S0043-1354(02)00440-2
  11. Sears, K., J. A. Oleszkiewicz, and P. Lagasse (2003), Nitrification in Pure Oxygen Activated Sludge Systems, J. Envir. Engrg. 129(2), 130-135 https://doi.org/10.1061/(ASCE)0733-9372(2003)129:2(130)
  12. Wild, H. E., C. N. Sawyer and T. C. McMahan (1971), Factors affecting nitrification kinetics, JWPCF. 43, 1845-1854