In Silico Analysis of Lactic Acid Secretion Metabolism through the Top-down Approach: Effect of Grouping in Enzyme kinetics

  • Jin, Jong-Hwa (Department of Chemical Engineering, Kwangwoon University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • Published : 2005.10.31

Abstract

A top-down approach is known to be a useful and effective technique for the design and analysis of metabolic systems. In this Study, we have constructed a grouped metabolic network for Lactococcus lactis under aerobic conditions using grouped enzyme kinetics. To test the usefulness of grouping work, a non-grouped system and grouped systems were compared quantitatively with each other. Here, grouped Systems were designed as two groups according to the extent of grouping. The overall simulated flux values in grouped and non-grouped models had pretty similar distribution trends, but the details on flux ratio at the pyruvate branch point showed a little difference. This result indicates that our grouping technique can be used as a good model for complicated metabolic networks, however, for detailed analysis of metabolic network, a more robust mechanism Should be considered. In addition to the data for the pyruvate branch point analysis, Some major flux control coefficients were obtained in this research.

Keywords

References

  1. Atkinson, B. and F. Mavituna (1982) Biochemical Engineering and Biotechnology Handbook. Macmillan, Inc., NY, USA
  2. Vickroy, T. B. (1985) The Practice of Biotechnology: Commodity Products. Pergamon Press, Elmsford, NY, USA
  3. Hofvendahl, K. and B. Hahn-Hagerdal (2000) Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26: 87-107. https://doi.org/10.1016/S0141-0229(99)00155-6
  4. Lopez de Felipe, F., M. Kleerebezem, W. M. de Vos, and J. Hugenholtz (1998) Cofactor engineering: a novel approach to metabolic engineering in Lactococcus lactis by controlled expression of NADH oxidase. J. Bacteriol. 180: 3804-3808.
  5. Wang, D., L. Gao, J. Q. Lin, Y. B. Qu, J. Q. Lin, and S. Y. Yu (2002) Optimization of substrate feeding trajectory for fed-batch culture using genetic algorithm. Ind. Microbiol. 32: 40-43
  6. Mendes, P. (1993) GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems. Comput. Appl. Biosci. 9: 563-571.
  7. Leudeking R. and E. L. Piret (1959) A kinetic study of the lactic acid fermentation. J. Biochem. Microbiol. 1: 393-412. https://doi.org/10.1002/jbmte.390010406
  8. Marcel, H. N., J. C. Hoefnagel, E. M. Starrenburg, H. Jeroen, K. Michiel, V. S. Iris I., B. Roger, W. V. Hans, and L. S. Jacky (2002) Metabolic engineering of lactic acid bacteria the combined approach: kinetic modeling metabolic control and experimental analysis. Microbiology. 148: 1003-1013. https://doi.org/10.1099/00221287-148-4-1003
  9. Stephanopoulos, G., J. E. Nielsen, and A. A. Aristidou (1998) Metabolic Engineering: Principles and Methodologies, Academic Press, San Diego, CA, USA
  10. Neves, A. R., A. Ramos, H. Costa, I. I. van Swam, J. Hugenholtz, M. Kleerebezem, W. de Vos, and H. Santos (2002) Effect of different NADH oxidase levels on glucose metabolism by Lactococcus lactis: Kinetics of intracellular metabolite pools determined by in vivo nuclear resonance. Appl. Environ. Microbiol. 68: 6332-6342. https://doi.org/10.1128/AEM.68.12.6332-6342.2002
  11. Nam, J. W., K. H. Han, E. S. Yoon, D. I. Shin, J. H. Jin, D. H. Lee, S. Y. Lee, and J. Lee (2004) In silico analyis of lactate producing metabolic network in Lactococcus lactis. Enzyme Microb. Technol. 35: 654-662. https://doi.org/10.1016/j.enzmictec.2004.08.032
  12. http://biocyc.org/
  13. http://brenda.uni-koeln.de/
  14. http://www.genome.ad.jp/kegg/metabolism.html
  15. Mendes, P., D. B. Kell, and G. R. Welch (1995) Metabolic channeling in organized enzyme systems: experiments and models. Adv. Mol. Cell Biol. 11: 1-19. https://doi.org/10.1016/S1569-2558(08)60246-5
  16. Delgado, J. and J. C. Liao (1992) Determination of Flux control coefficients from transient metabolite concentrations. J. Biochem. 282: 919-927. https://doi.org/10.1042/bj2820919
  17. Delgado, J. and J. C. Liao (1992). Metabolic control analysis using transient metabolite concentrations. J. Biochem. 285: 965-972. https://doi.org/10.1042/bj2850965
  18. http://jjj.biochem.sun.ac.za/
  19. Snoep, J. L., M. J. Teixeira De Mattos, M. J. C. Starrenburg, and J. Hugenholtz (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha-acetolactate synthase of Lactococcus lactis ssp. lactis bv. diacetylactis. J. Bacteriol. 174: 4838-4841. https://doi.org/10.1128/jb.174.14.4838-4841.1992
  20. Wills, C., P. Kratofil, D. Londo, and T. Martin (1981) Characterization of the two alcohol dehydrogenases of Zymomonasmobilis. Arch. Biochem Biophys. 210: 775-785. https://doi.org/10.1016/0003-9861(81)90245-9
  21. Hofvendahl, K., E. W. J. van Niel, and B. Hahn-Hagerdal (1999) Effect of temperature and pH on growth and product formation of Lactobaillus lactis ssp. lactis ATCC 19435 growing on maltose. Appl. Microbiol. Biotechnol. 51: 669-672. https://doi.org/10.1007/s002530051449
  22. Koebmann, B. J., H. V. Westerhoff, J. L. Snoep, D. Nilsson, and P. R. Jensen (2002) The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184: 3909-3916 https://doi.org/10.1128/JB.184.14.3909-3916.2002