Anaerobic Bacterial Degradation for the Effective Utilization of Biomass

  • Published : 2005.12.31

Abstract

Biomass is originally photosynthesized from inorgainic compounds such as $CO_2$, minerals, water and solar energy. Recent studies have shown that anaerobic bacteria have the ability to convert recalcitrant biomass such as cellullosic or chitinoic materials to useful compounds. The biomass containing agricultural waste, unutilized wood and other garbage is expected to utilize as feed, food and fuel by microbial degradation and other metabolic functions. In this study we isolated several anaerobic, cellulolytic and chitinolytic bacteria from rumen fluid, compost and soil to study their related enzymes and genes. The anaerobic and cellulolytic bacteria, Clostridium thermocellum, Clostridium stercorarium, and Clostridium josui, were isolated from compost and the chitinolytic Clostridium paraputrificum from beach soil and Ruminococcus albus was isolated from cow rumen. After isolation, novel cellulase and xylanase genes from these anaerobes were cloned and expressed in Escherichia coli. The properties of the cloned enzymes showed that some of them were the components of the enzyme (cellulase) complex, i.e., cellulosome, which is known to form complexes by binding cohesin domains on the cellulase integrating protein (Cip: or core protein) and dockerin domains on the enzymes. Several dockerin and cohesin polypeptides were independently produced by E. coli and their binding properties were specified with BIAcore by measuring surface plasmon resonance. Three pairs of cohesin-dockerin with differing binding specificities were selected. Two of their genes encoding their respective cohesin polypeptides were combined to one gene and expressed in E. coli as a chimeric core protein, on which two dockerin-dehydrogenase chimeras, the dockerin-formaldehyde dehydrogenase and the dockerin-NADH dehydrogenase are planning to bind for catalyzing $CO_2$ reduction to formic acid by feeding NADH. This reaction may represent a novel strategy for the reduction of the green house gases. Enzymes from the anaerobes were also expressed in tobacco and rice plants. The activity of a xylanase from C. stercorarium was detected in leaves, stems, and rice grain under the control of CaMV35S promoter. The digestibility of transgenic rice leaves in goat rumen was slightly accelerated. C. paraputrificum was found to solubilize shrimp shells and chitin to generate hydrogen gas. Hydrogen productivity (1.7 mol $H_2/mol$ glucos) of the organism was improved up to 1.8 times by additional expression of the own hydrogenase gene in C. paraputrficum using a modified vector of Clostridiu, perfringens. The hydrygen producing microflora from soil, garbage and dried pelletted garbage, known as refuse derived fuel(RDF), were also found to be effective in converting biomass waste to hydrogen gas.

Keywords

References

  1. Taya, M., K. Ohmiya, T. Kobayashi, and S. Shimizu (1980) Monitoring and control of a cellulolytic anaerobe culture by using gas evolved as an indicator. J. Ferment. Technol. 58: 463-469
  2. Ohmiya, K., K. Nokura, and S. Shimizu (1983) Enhancement of cellulose degradation by Ruminococcus albus at high cellulose concentration. J. Ferment. Technol. 61: 25-30
  3. Taya, M., K. Ohmiya, T. Kobayashi, and S. Shimizu (1983) Enhancement of cellulose degradation by mutants from anaerobe, Ruminococcus albus. J. Ferment. Technol. 61: 197-199
  4. Ohmiya, K., M. Shirai, Y. Kurachi, and S. Shimizu (1985) Isolation and properties of $\beta$-glucosidase from Ruminococcus albus. J. Bacteriol. 161: 432-434
  5. Ohmiya, K., K. Maeda, and S. Shimizu (1987) Purification and properties of endo-1,4-$\beta$-glucanase from Ruminococcus albus. Carbohydr. Res. 166: 145-155 https://doi.org/10.1016/0008-6215(87)80051-4
  6. Ohmiya, K., K. Nagashima, T. Kajino, E. Goto, A. Tsukada, and S. Shimizu (1988) Cloning of the cellulase gene from Ruminococcus albus and its expression in Escherichia coli. Appl. Environ. Microbiol. 54: 1511-1515
  7. Ohmiya, K., T. Kajino, A. Kato, and S. Shimizu (1989) Structure of a Ruminococcus albus endo-1,4-$\beta$ -glucanase gene. J. Bacteriol. 171: 6771-6775 https://doi.org/10.1128/jb.171.12.6771-6775.1989
  8. Ohmiya, K., H. Deguchi, and S. Shimizu (1991) Modification of the properties of a Ruminococcus albus endo- 1,4-$\beta$ -glucanase by gene truncation. J. Bacteriol. 173: 636- 641 https://doi.org/10.1128/jb.173.2.636-641.1991
  9. Watanabe, Y., R. Moriyama, T. Matsuda, S. Shimizu, and K. Ohmiya (1992) Purification and properties of the endo- 1,4-$\beta$ -glucanase from Ruminococcus albus. J. Ferment. Bioeng. 73: 54-57 https://doi.org/10.1016/0922-338X(92)90232-J
  10. Karita, S., K. Morioka, T. Kajino, K. Sakka, K. Shimada, and K. Ohmiya (1993) Cloning and sequenceing of a novel endo-1,4-$\beta$ -glucanase gene from Ruminococcus albus. J. Ferment. Technol. 76: 493-444
  11. Karita, S., K. Sakka, and K. Ohmiya (1996) Cellulose binding domains confer an enhanced activity against insoluble cellulose to Ruminococcus albus endoglucanase IV. J. Ferment. Bioeng. 81: 553-556 https://doi.org/10.1016/0922-338X(96)81479-6
  12. Karita, S., T. Kimura, K. Sakka, and K. Ohmiya (1997) Purification of Ruminococcus albus endoglucanase IV using a cellulose-binding domain as an affinity tag. J. Ferment. Bioeng. 84: 354-357 https://doi.org/10.1016/S0922-338X(97)89259-8
  13. Sukhumavasi, J., K. Ohmiya, S. Shimizu, and K. Ueno (1988) Clostridium josui sp. nov., a cellulolytic, moderate thrmophilic species from Thai compost. Intern. J. Syst. Bacteriol. 38: 179-182 https://doi.org/10.1099/00207713-38-2-179
  14. Fujino, T., T. Sasaki, K. Ohmiya, and S. Shimizu (1990) Purification and properties of an endo-1,4-$\beta$ -glucanase translated from a Clostridium josui gene in Escherichia coli. Appl. Environ. Microbiol. 56: 1175-1178
  15. Fujino, T. and K. Ohmiya (1991) Cloning of the celB gene encoding endo-1,4-$\beta$ -glucanase-2 from Clostridium josui in Escherichia coli and the properties of the translated product. J. Ferment. Bioeng. 72: 422-425 https://doi.org/10.1016/0922-338X(91)90048-L
  16. Fujino, T. and K. Ohmiya (1992) Nucleotide sequence of an endo-1,4-$\beta$ -glucanase gene (celA) from Clostridium josui. J. Ferment. Bioeng. 73: 308-313 https://doi.org/10.1016/0922-338X(92)90189-2
  17. Fujino, T., S. Karita, and K. Ohmiya (1993) Nucleotide sequence of ce1B gene encoding endo-1,4-$\beta$ -glucanase-2 and ORF1and ORF-2 forming a putative cellulase gene cluster of Clostridium josui. J. Ferment. Bioeng. 76: 243- 250 https://doi.org/10.1016/0922-338X(93)90188-E
  18. Sakka, K., K. Yoshikawa, Y. Kojima, S. Karita, K. Ohmiya, and K. Shimada (1993) Nucleotide sequence of the Clostridium stercorarium xylA gene encoding a bifunctional protein with $\beta$ -D-xylosidase and $\alpha$-L-arabinofuranosidase activities, and properties of the translated product. Biosci. Biotech. Biochem. 57: 268-272 https://doi.org/10.1271/bbb.57.268
  19. Sakka, K., Y. Kojima, T. Kondo, S. Kariya, K. Ohmiya, and K. Shimada (1993) Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: Identification of catalytic and cellulose binding domains. Biosci. Biotech. Biochem. 57: 273-277 https://doi.org/10.1271/bbb.57.273
  20. Sakka, K., Y. Kojima, T. Kondo, S. Karita, K. Shimada, and K. Ohmiya (1994) Purification and characterization of xylanase A from Clostridium stercorarium F-9 and a recombinant Escherichia coli. Biosci. Biotech. Biochem. 58: 1496-1499 https://doi.org/10.1271/bbb.58.1496
  21. Aminov, R. I., N. Golovchenko, and K. Ohmiya (1995) Expression of a celE gene from Clostridium thermocellum in Bacillus. J. Ferment. Bioeng. 79: 530-537 https://doi.org/10.1016/0922-338X(95)94743-B
  22. Takada, G., S. Karita, A. Takeuchi, M. M. Ahsan, T. Kimura, K. Sakka, and K. Ohmiya (1996) Specific adsorption of Clostridium stercorarium xylanase to amorphous cellulose and its desorption by cellobiose. Biosci. Biotech. Biochem. 60: 1183-1185 https://doi.org/10.1271/bbb.60.1183
  23. Ahsan, M. M., M. Matumoto, S. Karita, K. Sakka, and K. Ohmiya (1997) Purification and characterrization of the family J catalytic domain derived from the Clostridium thermocellum endoglucanase celJ. Biosci. Biotech. Biochem. 61: 427-431 https://doi.org/10.1271/bbb.61.427
  24. Ahsan, M. M., T. Kimura, S. Karita, K. Sakka, and K. Ohmiya (1996) Cloning, DNA sequencing and expression of the gene encoding Clostridium thermocellum Cellulase CelJ, the largest catalytic component of the cellulosome. J. Bacteriol. 178: 5732-5740 https://doi.org/10.1128/jb.178.19.5732-5740.1996
  25. Hayashi, H., K. Takagi, M. Fukumura, T. Kimura, S. Karita, K. Sakka, and K. Ohmiya (1997) Sequence of xynC and properties of XynC, a major component of the Clostridium thermocellum cellulosome. J. Bacteriol. 179: 4246-4253 https://doi.org/10.1128/jb.179.13.4246-4253.1997
  26. Jindou, S., S. Karita, E. Fujino, T. Fujino, H. Hayashi, T. Kimura, K. Sakka, and K. Ohmiya (2002) $\alpha$-Galactosidase Aga27A, an enzymatic component of the Clostridium josui cellulosome. J. Bacteriol 184: 600-604 https://doi.org/10.1128/JB.184.2.600-604.2002
  27. Ohara, H., J. Noguchi, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2000) Sequence of egV and properties of EGV, a Ruminococcus albus endoglucanase containing a dockerin domain. Biosci. Biotechnol. Biochem. 64: 80-88 https://doi.org/10.1271/bbb.64.80
  28. Ohara, H., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2000) Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus. Biosci. Biotechnol. Biochem. 64: 254-260 https://doi.org/10.1271/bbb.64.254
  29. Kim, Y. S., A. P. Singh, S. G. Wi, K. H. Myung, S. Karita, and K. Ohmiya (2001) Cellulosome-like structures in ruminal cellulolytic bacterium Ruminococcus albus F-40 as revealed by electron microscopy. Asian-Aust. J. Anim. Sci. 14: 1429-1433 https://doi.org/10.5713/ajas.2001.1429
  30. Jindou, S., A. Souda, S. Karita, T. Kajino, P. Beguin, D. Wu, M. Inagaki, T. Kimura, K. Sakka, and K. Ohmiya (2004) Cohesin/dockerin interactions within and between Clostridium josui and Clostridium thermocellum: Binding selectivity between cognate dockerin and cohesin domains and species specificity. J. Biol. Chem. 279: 9867-9874 https://doi.org/10.1074/jbc.M308673200
  31. Kawazu, T., T. Ohta, K. Ito, M. Shibata, T. Kimura, K. Sakka, and K. Ohmiya (1996) Expression of a Ruminococcus albus celulase gene in tabacco suspension cells. J. Ferment. Bioeng. 82: 205-209 https://doi.org/10.1016/0922-338X(96)88809-X
  32. Ohmiya, K., H. Deguchi, and S. Shimizu (1991) Modification of the properties of a Ruminococcus albus endo- 1,4-$\beta$-glucanase by gene truncation. J. Bacteriol. 173: 636-641 https://doi.org/10.1128/jb.173.2.636-641.1991
  33. Deguchi, H., K. Watanabe, T. Sasaki, T. Matsuda, S. Shimizu, and K. Ohmiya (1991) Purification and properties of the endo-1,4-$\beta$-glucanase from Ruminococcus albus and its gene product in Escherichia coli. J. Ferment. Bioeng. 71: 221-225 https://doi.org/10.1016/0922-338X(91)90271-H
  34. Kimura, T., T. Mizutani, K. Sakka, and K. Ohmiya (2003) Stable expression of thermostable xylanase gene of Clostridium thermocellum in tobacco BY-2 cells. J. Biosci. Bioeng. 95: 397-400 https://doi.org/10.1016/S1389-1723(03)80074-9
  35. Sun, J.-L., K. Sakka, S. Karita, T. Kimura, and K. Ohmiya (1998) Adsorption of Clostridium stercorarium xylanase A to insoluble xylan and the importance of the CBDs to xylan hydrolysis. J. Ferment. Bioeng. 85: 63-38 https://doi.org/10.1016/S0922-338X(97)80355-8
  36. Fukumura, M., K. Sakka, K. Shimada, and K. Ohmiya (1995) Nucleotide sequence of the Clostridium stercorarium F-9 xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci. Biotech. Biochem. 59: 40-46 https://doi.org/10.1271/bbb.59.40
  37. Fukumura, M., A. Tanaka, K. Sakka, and K. Ohmiya (1995) Process of thermal denaturation of xylanase (XynB) from Clostridium stercorarium F-9. Biosci. Biotech. Biochem. 59: 47-50 https://doi.org/10.1271/bbb.59.47
  38. Sun, J.-L., T. Kawazu, T. Kimura, S. Karita, K. Sakka, and K. Ohmiya (1997) High expression of the xylanase B gene from Clostridium stercorarium in tobacco cells. J. Ferment. Bioeng. 84: 219-223 https://doi.org/10.1016/S0922-338X(97)82057-0
  39. Kawazu, T., T. Sun, M. Shibata, T. Kimura, K. Sakka, and K. Ohmiya (1999) Expression of a bacterial endoglucanase gene in tobacco increases digestibility of its cell wall fibers. J. Biosci. Bioeng. 88: 421-425 https://doi.org/10.1016/S1389-1723(99)80220-5
  40. Kimura, T., T. Mizutani, T. Tanaka, T. Koyama, K. Sakka, and K. Ohmiya (2003) Molecular breeding of transgenic rice expressing a xylanase domain of the xynA gene from Clostridium thermocellum. Appl. Microbiol. Biotechnol. 62: 374-379 https://doi.org/10.1007/s00253-003-1301-z
  41. Shimizu. M., T. Kimura, T. Koyama, K. Suzuki, N. Ogawa, K. Miyashita, K. Sakka, and K. Ohmiya (2002) Molecular breeding of transgenic rice plants expressing a bacterial chlorocatechol dioxygenase gene. Appl. Environ. Microbiol. 68: 4061-4066 https://doi.org/10.1128/AEM.68.8.4061-4066.2002
  42. Evvyernie, D., S. Yamazaki, K. Morimoto, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2000) Identification and characterization of Clostridium paraputrificum M-21, a chitinolytic, mesophilic and hydrogen-producing bacterium. J. Biosci. Bioeng. 89: 596-601 https://doi.org/10.1016/S1389-1723(00)80063-8
  43. Evvyernie, D., K. Morimoto, S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2001) Conversion of chitinous wastes to hydrogen gas by Clostridium paraputrificum M- 21. J. Biosci. Bioeng. 91: 339-343 https://doi.org/10.1263/jbb.91.339
  44. Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (1999) Seqencing, expression, and transcription analysis of the Clostridium paraputrificum chiA gene encoding chitinase ChiA. Appl. Microbiol. Biotechnol. 51: 340-347 https://doi.org/10.1007/s002530051400
  45. Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (2001) Characterization of Clostridium paraputrificum chitinase A from a recombinant Escherichia coli. J. Biosci. Bioeng. 92: 466-468 https://doi.org/10.1263/jbb.92.466
  46. Morimoto, K., S. Karita, T. Kimura, K. Sakka, and K. Ohmiya (1997) Cloning, sequencing, and expression of the gene encoding Clostridium paraputrificum chitinase chiB and analysis of the functions of novel cadherin-like domains and a chitin-binding domain. J. Bacteriol. 179: 7306-7314 https://doi.org/10.1128/jb.179.23.7306-7314.1997
  47. Li, H., K. Morimoto, N. Katagiri, T. Kimura, K. Sakka, and K. Ohmiya (2002) A novel $\beta$-N-acetylglucosaminidase of Clostridium paraputrificum M-21 with high activity on chitobiose. Appl. Microbiol. Biotechnol. 60: 420-427 https://doi.org/10.1007/s00253-002-1129-y
  48. Li, H., K. Morimoto, T. Kimura, K. Sakka, and K. Ohmiya (2003) A new type of $\beta$-N-Acetylglucosaminidase from hydrogen-producing Clostridium paraputrificum M-21. J. Biosci. Bioeng. 96: 268-274 https://doi.org/10.1016/S1389-1723(03)80192-5
  49. Sakka, K., M. Kawase, D. Baba, K. Morimoto, S. Karita, T. Kimura, and K. Ohmiya (2003) Electrotransformation of Clostridium paraputrificum M-21 with some plasmids. J. Biosci. Bioeng. 96: 304-306 https://doi.org/10.1016/S1389-1723(03)80198-6
  50. Sakka, M., T. Kimura, K. Sakka, and K. Ohmiya (2004) Hydrogen Gas Generation from refuse-derived fuel (RDF) under wet conditions. Biosci. Biotechnol. Biochem. 68: 466-467 https://doi.org/10.1271/bbb.68.466