Electrical Recognition of Label-Free Oligonucleotides upon Streptavidin-Modified Electrode Surfaces

  • Park, Jong-Wan (The Institute of Scientific and Industrial Research, Osaka University) ;
  • Jung, Ho-Sub (The Institute of Scientific and Industrial Research, Osaka University) ;
  • Lee, Hea-Yeon (The Institute of Scientific and Industrial Research, Osaka University) ;
  • Kawai, Tomoji (The Institute of Scientific and Industrial Research, Osaka University)
  • Published : 2005.12.31

Abstract

For the purpose of developing a direct label-free electrochemical detection system, we have systematically investigated the electrochemical signatures of each step in the preparation procedure, from a bare gold electrode to the hybridization of label-free complementary DNA, for the streptavidin-modified electrode. For the purpose of this investigation, we obtained the following pertinent data; cyclic voltammogram measurements, electrochemical impedance spectra and square wave voltammogram measurements, in $Fe(CN)_6^{3-}/Fe(CN)_6^{4-}$ solution (which was utilized as the electron transfer redox mediator). The oligonucleotide molecules on the streptavidin-modified electrodes exhibited intrinsic redox activity in the ferrocyanide-mediated electrochemical measurements. Furthermore, the investigation of electrochemical electron transfer, according to the sequence of oligonucleotide molecules, was also undertaken. This work demonstrates that direct label-free oligonucleotide electrical recognition, based on biofunctional streptavidin-modified gold electrodes, could lead to the development of a new biosensor protocol for the expansion of rapid, cost-effective detection systems.

Keywords

References

  1. Ebersole, R. C., J. A. Miller, J. R. Moran, and M. D. Ward (1990) Spontaneously formed functionally active avidin monolayers on metal surfaces: a strategy for immobilizing biological reagents and design of piezoelectric biosensors. J. Am. Chem. Soc. 112: 3239-3241 https://doi.org/10.1021/ja00164a070
  2. Wang, J., G. Rivas, J. R. Fernandes, J. L. L. Paz, M. Jiang, and R. Waymire (1998) Indicator-free electrochemical DNA hybridization biosensor. Anal. Chim. Acta 375: 197- 203 https://doi.org/10.1016/S0003-2670(98)00503-0
  3. Johnston, D. H., K. C. Glasgow, and H. H. Thorp (1995) Electrochemical measurement of the solvent accessibility of nucleobases using electron transfer between DNA and metal complexes. J. Am. Chem. Soc. 117: 8933-8938 https://doi.org/10.1021/ja00140a006
  4. Park, J. W., H. Y. Lee, J. M. Kim, R. Yamasaki, T. Kanno, H. Tanaka, H. Tanaka, and T. Kawai (2004) Electrochemical detection of nonlabeled oligonucleotide DNA using the biotin-modified DNA(ss) on streptavidin-modified gold electrode. J. Biosci. Bioeng. 97: 29-32 https://doi.org/10.1016/S1389-1723(04)70161-9
  5. Kim, J. M., R. Yamasaki, J. W. Park, H. S. Jung, H. Y. Lee, and T. Kawai (2004) Stable high ordered protein layers confirmed by atomic force microscopy and quartz crystal microbalance. J. Biosci. Bioeng. 97: 140-142
  6. Lee, H. Y., J. W. Park, H. S. Jung, J. M. Kim, and T. Kawai (2004) Electrochemical assay of nonlabeled DNA chip and SNOM imaging by using streptavidin-biotin interaction. J. Nanosci. Nanotechnol. 4: 882-885 https://doi.org/10.1166/jnn.2004.103
  7. Lee, H. Y., J. W. Park, and T. Kawai (2004) SNPs feasibility of nonlabeled oligonucletides onby using electrochemical sensing. Electroanalysis 16: 1999-2002 https://doi.org/10.1002/elan.200303034
  8. Kim, J. M., H. S. Jung, J. W. Park, H. Y. Lee, and T. Kawai (2004) AFM phase lag mapping for protein-DNA oligonucleotide complexes. Anal. Chim. Acta 525: 151- 157 https://doi.org/10.1016/j.aca.2004.08.034
  9. Kelley, S. O., J. K. Barton, N. M. Jackson, and M. G. Hill (1997) Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjugate Chem. 8: 31-37 https://doi.org/10.1021/bc960070o
  10. Drummond, T. G., M. G. Hill, and J. K Barton (2003) Electrochemical DNA sensors. Nat. Biotechnol. 21: 1192- 1199 https://doi.org/10.1038/nbt873
  11. Napier, M. E., C. R. Loomis, M. F. Sistare, J. Kim, A. E. Eckhardt, and H. H. Thorp (1997) Probing biomolecule recognition with electron transfer: electrochemical sensors for DNA hybridization. Bioconjugate Chem. 8: 906-913 https://doi.org/10.1021/bc9701149
  12. Yang, M., M. E. McGovern, and M. Thompson (1997) Genosensor technology and the detection of interfacial nucleic acid chemistry. Anal. Chim. Acta 346: 259-275
  13. Sosnowski, R. G., E. Tu, W. F. Butler, J. P. O'Connell, and M. J. Heller (1997) Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. Proc. Natl. Acad. Sci. 94: 1119-1123
  14. Yu, C. J., Y. Wan, H. Yowanto, J. Li, C. Tao, M. D. James, C. L. Tan, G. F. Blackburn, and T. J. Meade (2001) Electronic detection of single-base mismatches in DNA with ferrocene-modified probes. J. Am. Chem. Soc. 123: 11155-11161 https://doi.org/10.1021/ja010045f
  15. Zhang, L. and X. Lin (2005) Electrochemical behavior of a covalently modified glassy carbon electrode with aspartic acid and its use for voltammetric differentiation of dopamine and ascorbic acid, Anal. Bioanal. Chem. 382: 1669- 1677 https://doi.org/10.1007/s00216-005-3318-x
  16. Simokawa, N., A. Hirano, and M. Sugawara (2001) An ion-channel sensor for abasic sites in DNA. Anal. Sci. 17: 1379-1382 https://doi.org/10.2116/analsci.17.1379