Antioxidant Effect of Homogentisic Acid on Hydrogen Peroxide Induced Oxidative Stress in Human Lung Fibroblast Cells

  • Kang, Kyoung-Ah (Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University) ;
  • Chae, Sung-Wook (Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University) ;
  • Lee, Kyoung-Hwa (Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University) ;
  • Zhang, Rui (Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University) ;
  • Jung, Myung-Sun (Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University) ;
  • You, Ho-Jin (Department of Pharmacology, College of Medicine, Chosun University) ;
  • Kim, Jin-Sook (Department of Herbal Pharmaceutical Development, Korea Institute of Oriental Medicine) ;
  • Hyun, Jin-Won (Department of Biochemistry, College of Medicine and Applied Radiological Science Research Institute, Cheju National University)
  • Published : 2005.12.31

Abstract

Homogentisic acid was found to scavenge intracellular reactive oxygen species (ROS), and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and thus prevented lipid peroxidation in human fibroblast (Wl 38) cells. The radical scavenging activity of homogentisic acid was found to protect Wl 38 cells against hydrogen peroxide $(H_2O_2)$ induced oxidative stress, via the activation of extracellular signal regulated kinase (ERK) protein. Homogentisic acid increased the activity of catalase. Hence, from the present study, it is suggested that homogentisic acid protects Wl 38 cells against $H_2O_2$ damage by enhancing the intracellular antioxidative activity.

Keywords

References

  1. Halliwell, B. and J. M. C. Gutteridge (1999) Free Radicals in Biology and Medicine. 3rd ed., pp. 105-245. Oxford University Press, Oxford, UK
  2. Larson, R. A. (1997) Naturally Occurring Antioxidants. pp. 83-94. Lewis publishers, New York, NY, USA
  3. Kim, K. (2002) Characterization of 1,4-benzoquinone reductase from bovine liver. Biotechnol. Bioprocess Eng. 7: 216-220 https://doi.org/10.1007/BF02932973
  4. Hara, H., M. Ohta, K. Ohta, S. Kuno, and T. Adachi (2003) Increase of antioxidative potential by tert-butylhydroquinone protects against cell death associated with 6-hydroxydopamine-induced oxidative stress in neuroblastoma SH-SY5Y cells. Mol. Brain Res. 119: 125-131 https://doi.org/10.1016/j.molbrainres.2003.08.021
  5. Iwashima, M., J. Mori, X. Ting, T. Matsunaga, K. Hayashi, D. Shinoda, H. Saito, U. Sankawa, and T. Hayashi (2005) Antioxidant and antiviral activities of plastoquinones from the brown alga Sargassum micracanthum, and a new chromene derivative converted from the plastoquinones. Biol. Pharm. Bull. 28: 374-377 https://doi.org/10.1248/bpb.28.374
  6. Misra, H. S., N. P. Khairnara, A. Barikb, K. I. Priyadarsini, H. Mohan, and S. K. Aptea (2004) Pyrroloquinolinequinone: a reactive oxygen species scavenger in bacteria. FEBS Lett. 578: 26-30 https://doi.org/10.1016/j.febslet.2004.10.061
  7. Aberg, F., E. L. Appelkvist, G. Dallner, and L. Ernster (1992) Distribution and redox state of ubiquinones in rat and human tissues. Arch. Biochem. Biophys. 295: 230-234 https://doi.org/10.1016/0003-9861(92)90511-T
  8. Frei, B., M. C. Kim, and B. N. Ames (1990) Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87: 4879-4883
  9. Ernster, L. and G. Dallner (1995) Biochemical, physiological and medical aspects of ubiquinone function. Biochim. Biophys. Acta 1271: 195-204 https://doi.org/10.1016/0925-4439(95)00028-3
  10. Mellors, A. and A. L. Tappel (1966) The inhibition of mitochondrial peroxidation by ubiquinone and ubiquinol. J. Biol. Chem. 241: 4353-4356
  11. Stocker, R., V. W. Bowry, and B. Frei (1991) Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does $\alpha$-tocopherol. Proc. Natl. Acad. Sci. USA 88: 1646-1650
  12. Chuang, Y. C., J. Y. H. Chan, A. Y. W. Chang, M. Sikorska, H. B. Borowski, and S. H. H. Chan (2003) Neroprotective effects of coenzyme Q 10 at rostral ventrolateral medulla against fatality during experimental endotoxemia in the rat. Shock 19: 427-432 https://doi.org/10.1097/01.shk.0000048900.46342.37
  13. Hegedus, Z. L. and U. Nayak (1994) Homogentisic acid and structurally related compounds as intermediates in plasma soluble melanin formation and in tissue toxicities. Arch. Int. Physiol. Biochim. Biophys. 102: 175-181 https://doi.org/10.3109/13813459409007534
  14. Phornphutkul, C., W. J. Introne, M. B. Perry, I. Bernardi, M. D. Murphey, D. L. Fitzpatrick, P. D. Anderson, M. Huizing, Y. Anikster, L. H. Gerber, and W. A. Gahl (2002) Natural history of alkaptonuria. N. Engl. J. Med. 347: 2111-2121 https://doi.org/10.1056/NEJMoa021736
  15. Martin, Jr., J. P. and B. Batkoff (1987) Homogentisic acid autoxidation and oxygen radical generation: implications for the etiology of alkaptonuric arthritis. Free Radic. Biol. Med. 3: 241-250 https://doi.org/10.1016/S0891-5849(87)80031-X
  16. Glatt, H. (1990) Endogenous mutagens derived from amino acids. Mutat. Res. 238: 235-243 https://doi.org/10.1016/0165-1110(90)90015-4
  17. Raghupathy, E., N. A. Peterson, and C. M. McKean (1968) Inhibition of cell-free protein synthesis by homogentisic acid. Biochim. Biophys. Acta 161: 575-577 https://doi.org/10.1016/0005-2787(68)90138-X
  18. Introne, W. J., C. Phornphutkul, I. Bernardini, K. McLaughlin, D. Fitzpatrick, and W. A. Gahla (2002) Exacerbation of the ochronosis of alkaptonuria due to renal insufficiency and improvement after renal transplantation. Mol. Genet. Metab. 77: 136-142 https://doi.org/10.1016/S1096-7192(02)00121-X
  19. Pryor, W. A., K. Stone, L. Y. Zang, and E. Bermudez (1998) Fractionation of aqueous cigarette tar extracts: fractions that contain the tar radical cause DNA damage. Chem. Res. Toxicol. 11: 441-448 https://doi.org/10.1021/tx970159y
  20. Murray, J. I., M. L. Whitfield, N. D. Trinklein, R. M. Myers, P. O. Brown, and D. Botstein (2004) Diverse and specific gene expression responses to stresses in cultured human cells. Mol. Biol. Cell 15: 2361-2374 https://doi.org/10.1091/mbc.E03-11-0799
  21. Rosenkranz, A. R., S. Schmaldienst, K. M. Stuhlmeier, W. Chen, W. Knapp, and G. J. Zlabinger (1992) A microplate assay for the detection of oxidative products using 2′,7′- dichlorofluorescein-diacetate. J. Immunol. Meth. 156: 39-45 https://doi.org/10.1016/0022-1759(92)90008-H
  22. Lo, S. F., S. M. Nalawade, V. Mulabagal, S. Matthew, C. L. Chen, C. L. Kuo, and H. S. Tsay (2004) In vitro propagation by asymbiotic seed germination and 1,1-diphenyl-2- picrylhydrazyl (DPPH) radical scavenging activity studies of tissue culture raised plants of three medicinally important species of dendrobium. Biol. Pharm. Bull. 27: 731-735 https://doi.org/10.1248/bpb.27.731
  23. Ohkawa, H., N. Ohishi, and K. Yagi (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351-358 https://doi.org/10.1016/0003-2697(79)90738-3
  24. Carmichael, J., W. G. DeGraff, A. F. Gazdar, J. D. Minna, and J. B. Mitchell (1987) Evaluation of a tetrazoliumbased semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 47: 936-941
  25. Lee, D. G., J. W. Hyun, K. A. Kang, J. O. Lee, S. H. Lee, B. J. Ha, J. M. Ha, E. Y. Lee, and J. H. Lee (2004) Ulva lactuca: a potential seaweed for tumor treatment and immune stimulation. Biotechnol. Bioprocess Eng. 9: 236-238 https://doi.org/10.1007/BF02942299
  26. Choi, D., W. S. Cha, S. H. Kang, and B. R. Lee (2004) Effect of Pleurotus ferulae extracts on viability of human lung cancer cervical cancer cell lines. Biotechnol. Bioprocess Eng. 9: 356-361 https://doi.org/10.1007/BF02933057
  27. Nicoletti, I., G. Migliorati, M. C. Pagliacci, F. Grignani, and C. Riccardi (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J. Immunol. Meth. 139: 271-279 https://doi.org/10.1016/0022-1759(91)90198-O
  28. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  29. Carrillo, M. C., S. Kanai, M. Nokubo, and K. Kitani (1991) (-) Deprenyl induces activities of both superoxide dismutase and catalase but not of glutathione peroxidase in the striatum of young male rats. Life Sci. 48: 517-521 https://doi.org/10.1016/0024-3205(91)90466-O
  30. Nourooz-Zadeh, J., J. Sarmadi-Tajaddini, and S. P. Wolff (1994) Measurement of plasma hydrogen peroxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal. Biochem. 220: 403-409 https://doi.org/10.1006/abio.1994.1357
  31. Kim, E. J. and T. H. Park (2003) Anti-apoptosis engineering. Biotechnol. Bioprocess Eng. 8: 76-82 https://doi.org/10.1007/BF02940260
  32. Pages, G., P. Lenomand, G. L'Allemania, J. C. Chambard, S. Meloche, and J. Pouyssegur (1991) Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90: 319-323
  33. Margoliash, E., A. Novogrodsky, A. Schejter, and A. Chejter (1960) Irreversible reaction of 3-amino-1:2:4-triazole and related inhibitors with the protein of catalase. Biochem. J. 74: 339-348 https://doi.org/10.1042/bj0740339
  34. Long, L. H., M. V. Clement, and B. Halliwell (2000) Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem. Biophys. Res. Commun. 273: 50-53 https://doi.org/10.1006/bbrc.2000.2895
  35. Halliwell, B. (1996) Antioxidants in human health and disease. Annu. Rev. Nutr. 16: 33-50 https://doi.org/10.1146/annurev.nu.16.070196.000341
  36. Willcox, J. K., S. L. Ash, and G. L. Catignani (2004) Antioxidants and prevention of chronic disease. Crit. Rev. Food Sci. Nutr. 44: 275-295 https://doi.org/10.1080/10408690490468489
  37. Lee, S. Y., E. O. Kim, H. J. Seo, M. Y. Kim, and J. D. Kim (2004) Development of new method for antioxidant capacity with ORP-pH system. Biotechnol. Bioprocess Eng. 9: 514-518 https://doi.org/10.1007/BF02933495
  38. McCubrey, J. A., W. S. May, V. Duronio, and A. Mufson (2000) Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 14: 9-21 https://doi.org/10.1038/sj.leu.2401657
  39. Robinson, M. J. and M. H. Cobb (1997) Mitogen activated protein kinase pathways. Curr. Opin. Cell Biol. 9: 180-186 https://doi.org/10.1016/S0955-0674(97)80061-0
  40. Widmann, C., S. Gibson, B. Jarpe, and G. L. Johnson (1999) Mitogen activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol. Rev. 79: 143-180 https://doi.org/10.1152/physrev.1999.79.1.143
  41. Zhou, L. Z., A. P. Johnson, and T. A. Rando (2001) NF kappa B and AP-1 mediate transcriptional responses to oxidative stress in skeletal muscle cells. Free Radic. Biol. Med. 31: 1405-1416 https://doi.org/10.1016/S0891-5849(01)00719-5
  42. Kim, H. Y., Y. H. Kim, J. W. Nam, H. J. Lee, H. M. Rho, and G. Jung (1994) Study of 5′-flanking region of human Cu/Zn superoxide dismutase. Biochem. Biophys. Res. Commun. 201: 1526-1533 https://doi.org/10.1006/bbrc.1994.1877
  43. Jones, P. L., G. Kucera, H. Gordon, and J. M. Boss (1995) Cloning and characterization of the murine manganous superoxide dismutase encoding gene. Gene 153: 155-161 https://doi.org/10.1016/0378-1119(94)00666-G
  44. Cobb, M. H. and E. J. Goldsmith (1995) How MAP kinases are regulated. J. Biol. Chem. 270: 14843-14846 https://doi.org/10.1074/jbc.270.25.14843
  45. Chen, Y. R., C. X. Wang, D. Templeton, R. J. Davis, and T. H. Tan (1996) The role of c-jun N-terminal kinase (JNK) in apoptosis induced by ultraviolet C. J. Biol. Chem. 271: 31929-31936 https://doi.org/10.1074/jbc.271.50.31929
  46. Murray, J. C., K. A. Lindberg, and S. R. Pinnell (1977) In vitro inhibition of chick embryo lysyl hydroxylase by homogentisic acid. J. Clin. Invest. 59: 1071-1079 https://doi.org/10.1172/JCI108730
  47. Young, A. J. and G. M. Lowe (2001) Antioxidant and prooxidant properties of carotenoids. Arch. Biochem. Biophys. 385: 20-27 https://doi.org/10.1006/abbi.2000.2149
  48. Nohl, H., L. Gille, and A. V. Kozlov (1998) Antioxidantderived prooxidant formation from ubiquinol. Free Radic. Biol. Med. 25: 666-675 https://doi.org/10.1016/S0891-5849(98)00105-1
  49. Kontush, A., B. Finckh, B. Karten, A. Kohlschutter, and U. Beisiegel (1996) Antioxidant and prooxidant activity of tocopherol in human plasma and low density lipoprotein. J. Lipid Res. 37: 1436-1448
  50. Yoshino, M., M. Haneda, M. Naruse, and K. Murakami (1999) Prooxidant activity of flavonoids: Copper-dependent strand breaks and the formation of 8-hydroxy-2′-deoxyguanosine in DNA. Mol. Genet. Metab. 68: 468-472 https://doi.org/10.1006/mgme.1999.2901
  51. Murias, M., W. Jager, N. Handler, T. Erker, Z. Horvath, T. Szekeres, H. Nohl, and L. Gille (2005) Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: structure-activity relationship. Biochem. Pharmacol. 69: 903-912 https://doi.org/10.1016/j.bcp.2004.12.001