Expression of Fungal Phytase on the Cell Surface of Saccharomyces cerevisiae

  • Mo, Ae-Young (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Park, Seung-Moon (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Kim, Yun-Sik (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Yang, Moon-Sik (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University) ;
  • Kim, Dae-Hyuk (Institute for Molecular Biology and Genetics, Basic Science Research Institute, Chonbuk National University)
  • Published : 2005.12.31

Abstract

Phytase improves the bioavailability of phytate phosphorus in plant foods to humans and animals, and reduces the phosphorus pollution of animal waste. We have engineered the cell surface of the yeast. Saccharomyces cerevisiae, by anchoring active fungal phytase on its cell wall, in order to apply it as a dietary supplement containing bioconversional functions in animal foods and a whole cell bio-catalyst for the treatment of waste. The phytase gene (phyA) of Aspergillus niger with a signal peptide of rice amylase 1A (Ramy1A) was fused with the gene encoding the C-terminal half (320 amino acid residues from the C-terminus) of yeast ${\alpha}-agglutinin$, a protein which is involved in mating and is covalently anchored to the cell wall. The resulting fusion construct was introduced into S. cerevisiae and expressed under the control of the constitutive glyceraldehydes-3-phosphate dehydrogenase (GPD) promoter. Phytase plate assay revealed that the surface-engineered cell exhibited a catalytically active opaque zone which was restricted to the margin of the colony. Additionally, the phytase activity was detected in the cell fraction, but was not detected in the culture medium when it was grown in liquid. These results indicate that the phytase was successfully anchored to the cell surface of yeast and was displayed as its active form. The amount of recombinant phytase on the surface of yeast cells was estimated to be 16,000 molecules per cell.

Keywords

References

  1. Nelson, T. S., T. R. Shieh, R. J. Wodzinski, and J. H. Ware (1971) Effect of supplemental phytase on the utilization of phytate phosphorus by chicks. J. Nutr. 101: 1289-1293 https://doi.org/10.1093/jn/101.10.1289
  2. Wodzinski, R. J. and A. H. Ullah (1996) Phytase. Adv. Appl. Microbiol. 42: 263-302
  3. Han, Y., D. B. Wilson, and X. G. Lei (1999) Expression of an Aspergillus niger phytase gene (phyA) in, Saccharomyces cerevisiae. Appl. Environ. Microbiol. 65: 15-18
  4. Lim Y. Y., E. H. Park, J. H. Kim, S. M. Park, H. S. Jang, Y. J. Park, S. Yoon, M. S. Yang, and D. H. Kim (2001) Enhanced and targeted expression of fungal phytase in Saccharomyces cerevisiae. J. Microbiol. Biotechnol. 11: 915-921
  5. Wyss, M., L. Pasamontes, A. Friedlein, R. Remy, M. Tessier, A. Kronenberger, A. Middendorf, M. Lehmann, L. Schnoebelen, U. Rothlisberger, E. Kusznir, G. Wahl, F. Muller, H. W. Lahm, K. Vogel, and A. P. van Loon (1999) Biophysical characterization of fungal phytases (myoinositol hexakisphosphate phosphohydrolases): molecular size, glycosylation pattern, and engineering of proteolytic resistance. Appl. Environ. Microbiol. 65: 359-366
  6. Kim, C. H., K. J. Rao, D. J. Youn, and S. K. Rhee (2003) Scale-up of recombinant hirudin production from Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 8: 303-305 https://doi.org/10.1007/BF02949222
  7. Cha, K. H., M. D. Kim, T. H. Lee, H. K. Lim, K. H. Jung, and J. H. Seo (2004) Selection of optimum expression system for production of kringle fragment of human apolipoprotein( a) in Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 9: 523-527 https://doi.org/10.1007/BF02933497
  8. Colby, D. W., B. A. Kellogg, C. P. Graff, Y. A. Yeung, J. S. Swers, and K. D. Wittrup (2004) Engineering antibody affinity by yeast surface display. Methods Enzymol. 388: 348-58 https://doi.org/10.1016/S0076-6879(04)88027-3
  9. Kondo, A. and M. Uda (2004) Yeast cell-surface displayapplications of molecular display. Appl. Microbiol. Biotechnol. 64: 28-40 https://doi.org/10.1007/s00253-003-1492-3
  10. Sambrook, J., E. F. Fritsch, and T. Maniatis. (1989) Molecular Cloning: A Laboratory Manual. 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
  11. Shon, J. H., E. S. Choi, B. H. Chung, D. J. Youn, and J. H. Seo (1995) Process development of the production of recombinant hirudin in Saccharomyces cerevisiae: from upstream to downstream. Proc. Biochem. 30: 653-660
  12. Park, E. H., Y. M. Shin, Y. Y. Lim, T. H. Kwon, D. H. Kim, and M. S. Yang (2000) Expression of glucose oxidase by using recombinant yeast. J. Biotechnol. 81: 35-44 https://doi.org/10.1016/S0168-1656(00)00266-2
  13. Shin, Y. M., T. H. Kwon, K. S. Kim, K. S. Chae, D. H. Kim, J. H. Kim, and M. S. Yang (2001) Enhanced iron uptake of Saccharomyces cerevisiae by heterologous expression of a tadpole ferritin gene. Appl. Environ. Microbiol. 67: 1280-1283 https://doi.org/10.1128/AEM.67.3.1280-1283.2001
  14. Park, S. M., A. Y. Mo, Y. S. Jang, J. H. Lee, M. S. Yang, and D. H. Kim (2004) Expression of a functional human Tumor Necrosis Factor (hTNF)-$\alpha$ in yeast Saccharomyces cerevisiae. Biotechnol. Bioprocess Eng. 9: 292-296 https://doi.org/10.1007/BF02942346
  15. Kim, M. J., T. H. Kwon, Y. S. Jang, M. S. Yang, and D. H. Kim (2000) Expression of murine GM-CSF in recombinant Aspergillus niger. J. Microbial. Biotechnol. 10: 287- 292
  16. Kim, M. J., T. H. Kwon, Y. S. Jang, M. S. Yang, and D. H. Kim (2000) Expression of murine GM-CSF in recombinant Aspergillus niger. J. Microbial. Biotechnol. 10: 287- 292
  17. Ito, H., Y. Fukuda, K. Murata, and A. Kimura (1983) Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163-168
  18. Heinonen, J. K. and R. J. Lahti (1981) A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Anal. Biochem. 113: 313-317 https://doi.org/10.1016/0003-2697(81)90082-8
  19. Yoon, S. J., Y. J. Choi, H. K. Min, K. K. Cho, J. W. Kim, S. C. Lee, and Y. H. Jung (1996) Isolation and identification of phytase-producing bacterium, Enterobacter sp.4, and enzymatic properties of phytase enzyme. Enzyme. Microb. Technol. 18: 449-454 https://doi.org/10.1016/0141-0229(95)00131-X
  20. Shibasaki, S., M. Ueda, T. Iizuka, M. Hirayama, Y. Ikeda, N. Kamasawa, M. Osumi, and A. Tanaka (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl. Microbiol. Biotechnol. 55: 471-475 https://doi.org/10.1007/s002530000539
  21. Ueda, M. and A. Tanaka (2000) Cell surface engineering of yeast: construction of arming yeast with biocatalytst. J. Biosci. Bioeng. 90: 125-136
  22. Kondo, A., H. Shigechi, M. Abe, K. Uyama, T. Matsumoto, S. Takahashi, M. Ueda, A. Tanaka, M. Kishimoto, and H. Fukuda (2002) High level production from starch by a flocculent Saccharomyces cerevisiae strain displaying cell surface glucoamylase. Appl. Microbiol. Biotechnol. 58: 291-296 https://doi.org/10.1007/s00253-001-0900-9
  23. Fujita, Y., S. Takahashi, M. Ueda, A. Tanaka, H. Okada, Y. Morikawa, T. Kawaguchi, M. Arai, H. Fukuda, and A. Kondo (2002) Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68: 5136-5141 https://doi.org/10.1128/AEM.68.10.5136-5141.2002
  24. Boder, E. T. and K. D. Wittrup (1997) Yeast surface display for screening combinatorial polypeptide libraries. Nat. Biotechnol. 15: 553-557 https://doi.org/10.1038/nbt0697-553