Purification and Properties of a Collagenolytic Protease Produced by Marine Bacterium Vibrio vulnificus CYK279H

  • Kang, Sung-Il (Department of Biotechnology & Bioengineering, Pukyong National University) ;
  • Jang, Young-Boo (Department of Biotechnology & Bioengineering, Pukyong National University) ;
  • Choi, Yeung-Joon (Division of Marine Bioscience/Institute of Marine Industry, Gyeongsang National University) ;
  • Kong, Jai-Yul (Department of Biotechnology & Bioengineering, Pukyong National University)
  • Published : 2005.12.31

Abstract

A collagenolytic enzyme, produced by Vibrio vulnificus CYK279H, was purified by ultrafiltration, dialysis, Q-Sepharose ion exchange and Superdex-200 gel chromatography. The enzyme from the supernatant was purified 13.2 fold, with a yield of 11.4%. The molecular weight of the purified enzyme was estimated by SDS-PAGE to be approximately 35.0kDa. The N-terminal sequence of the enzyme was determined as Gly-Asp-Pro-Cys-Met-Pro-Ile-Ile-Ser-Asn. The optimum temperature and pH for the enzyme activity were $35^{\circ}C$ and 7.5, respectively. The enzyme activity was stable within the pH and temperature ranges 6.8-8.0 and $20{\sim}35^{\circ}C$, respectively. The purified enzyme was strongly activated by $Zn^{2+},\;Li^{2+},\;and\;Ca^{2+}$, but inhibited by $Cu^{2+}$. In addition, the enzyme was strongly inhibited by 1, 10-phenanthroline and EDTA. The purified enzyme was suggested to be a neutral metalloprotease.

Keywords

References

  1. Ravanti, L. and V. M. Kähäri (2000) Matrix metalloproteases in wound repair. Int. J. Mol. Med. 6: 391-407
  2. Harrington, D. J. (1996) Bacterial collagenases and collagen- degrading enzymes and their potential role in human disease. Infect. Immun. 64: 1885-1891
  3. Van Wart, H. E. and D. E. Steinbrink (1981) A continuous spectrophotometric assay for Clostridium histolyticum collagenase. Anal. Biochem. 113: 356-365 https://doi.org/10.1016/0003-2697(81)90089-0
  4. Gross, J. and C. M. Lapiere (1962) Collagenolytic activity in amphibian tissues : A tissue culture assay. Proc. Natl. Acad. Sci. USA 48: 1014-1022
  5. Peterkofsky, B. (1982) Bacterial collagenase. Methods Enzymol. 82: 453-471
  6. Eisen, A. Z., K. O. Henderson, J. J. Jeffrey, and R. A. Bradshaw (1973) A collagenolytic protease from the hepatopancreas of the fiddler crab, Uca pugilator. Purification and properties. Biochemistry 12: 1814-1822 https://doi.org/10.1021/bi00733a024
  7. Neurath, H. (1984) Evolution of protelytic enzyme. Science 224: 350-357 https://doi.org/10.1126/science.6369538
  8. Watanabe, K. (2004) Collagenolytic proteases from bacteria. Appl. Microbiol. Biotechnol. 63: 520-526 https://doi.org/10.1007/s00253-003-1442-0
  9. Honds, S. (1998) Dietary use of collagen and collagen peptides for cosmetics. Food style. 21: 54-60
  10. Dreisbach, J. H. and J. R. Merkel (1978) Induction of collagenase production in Vibrio B-30. J. Bacteriol. 135: 521-527
  11. Matsushita, O., K. Yoshihara, S. Katayama, J. Minami, and A. Okabe (1994) Purificaton and characterization of Clostridium perfringens 120-kilodalton collagenase and nucleotide sequence of the corresponding gene. J. Bacteriol. 176: 149-156 https://doi.org/10.1128/jb.176.1.149-156.1994
  12. Okamoto, M., Y. Yonejima, Y. Tsujimoto, Y. Suzuki, and K. Watanabe (2001) A thermostable collagenolytic protease with a very large molecular mass produced by thermophilic Bacillus sp. strain MO-1. Appl. Microbiol. Biotechnol. 57: 103-108 https://doi.org/10.1007/s002530100731
  13. Teo, J. W., L. H. Zhang, and C. L. Poh (2003) Cloning and characterization of a metalloprotease from Vibrio harveyi strain AP6. Gene 303: 147-156 https://doi.org/10.1016/S0378-1119(02)01151-4
  14. Matsushita, O., C. M. Jung, S. Katayama, J. Minami, Y. Takahashi, and A. Okabe (1999) Gene duplication and multiplicity of collagenases in Clostridium histolyticum. J. Bacteriol. 181: 923-933
  15. Gupta, R., Q. K. Beg, and P. Lorenz (2002) Bacterial alkaline proteases: molecular approaches and industrial applications. Appl. Microbiol. Biotechnol. 59: 15-32 https://doi.org/10.1007/s00253-002-0975-y
  16. Rao, M. B., A. M. Tanksale, M. S. Ghatge, and V. V. Deshpande (1998) Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62: 597- 635
  17. Kang, S. I., Y. M. Kim, Y. B. Jang, D. J. Lim, and J. Y. Kong (2004) The optimal culture condition for the collagenolytic protease production from Vibrio vulnificus CYK279H. Korean J. Biotechnol. Bioeng. 19: 295-300
  18. Moore, S. and W. H. Stein (1948) Photometric ninhydrin method for use in the chromatography of amino acids. J. Biol. Chem. 176: 367-388
  19. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principal of protein-dye binding. Anal. Biochem. 72: 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  20. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  21. Edman, P. and G. Begg (1967) A protein sequenator. Eur. J. Biochem. 1: 80-91 https://doi.org/10.1111/j.1432-1033.1967.tb00047.x
  22. Batrhomoeuf, C., H. Pourrat, and A. Pourrat (1992) Collagenolytic activity of a new semi-alkaline protease from Aspergillus niger. J. Ferment. Bioeng. 73: 233-236 https://doi.org/10.1016/0922-338X(92)90168-T
  23. Roy, P., B. Colas, and P. Durand (1996) Purification, kinetical and molecular characterizations of a serine collagenolytic protease from greenshore crab (Carcinus maenas) digestive gland. Comp. Biochem. Physiol. 115B: 87-95 https://doi.org/10.1016/0305-0491(96)00090-9
  24. Juarez, Z. E. and M. W. Stinson (1999) An extracellular protease of Streptococcus gordonii hydrolyzes type IV collagen and collagen analogues. Infect. Immun. 67: 271-278
  25. Sasagawa, Y., Y. Kamio, Y. Matsubara, Y. Matsubara, K. Suzuki, H. Kojima, and K. Izaki (1993) Purification and properties of collagenase from Cytophaga sp. L43-1 strain. Biosci. Biotechnol. Biochem. 57: 1894-1898 https://doi.org/10.1271/bbb.57.1894
  26. Altschul, S. F., T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  27. Aoki, H., M. N. Ahsan, K. Matsuo, T. Hagiwara, and S. Watabe (2003) Purification and characterization of collagenolytic proteases from the hepatopancreas of northern shrimp (Pandalus eous). J. Agric. Food Chem. 51: 777-783 https://doi.org/10.1021/jf020673w
  28. Sivakumar, P., P. Sampath, and G. Chandrakasan (1999) Collagenolytic metalloprotease (gelatinase) from the hepatopancreas of the marine crab, Scylla serrata. Comp. Biochem. Physiol. 123B: 273-279 https://doi.org/10.1016/S0305-0491(99)00067-X
  29. Jung, H. J., H. K. Kim, and J. I. Kim (1999) Purification and characterization of Co2+-activated extracellular metallo protease from Bacillus sp. JH108. J. Microbiol. Biotechnol. 9: 861-869
  30. Labadie, J. and M. C. Montel (1982) Purification and study of some properties of a collagenase produced by Empedobacter collagenolyticum. Biochimie 64: 49-53 https://doi.org/10.1016/S0300-9084(82)80609-3
  31. Murai, A., Y. Tsujimoto, H. Matsui, and K. Watanabe (2004) An Aneurinibacillus sp. strain AM-1 produces a praline-specific aminopeptidase useful for collagen degradation. J. Appl. Microbiol. 96: 810-818 https://doi.org/10.1111/j.1365-2672.2004.02210.x
  32. Hase, C. C. and R. A. Finkelstein (1993) Bacterial extracellular zinc-containing metalloproteases. Microbiol. Rev. 57: 823-837
  33. Chakraborty, R. and A. L. Chandra (1986) Purification and characterization of a streptomycete collagenase. J. Appl. Bacteriol. 61: 331-337 https://doi.org/10.1111/j.1365-2672.1986.tb04294.x
  34. Jackson, R. J., D. V. Lim, and M. L. Dao (1997) Identification and analysis of a collagenolytic activity in Streptococcus mutans. Curr. Microbiol. 34: 49-54 https://doi.org/10.1007/s002849900143
  35. Chae, Y. R. and K. G. Ryu (2004) Partial purification and characterization of an extracellular protease from Xenorhabdus nematophilus, a symbiotic bacterium isolated from an Entomopathogenic nematode, Steinernema glaseri. Biotechnol. Bioprocess Eng. 9: 379-382 https://doi.org/10.1007/BF02933061
  36. Lee, Y. J., J. H. Kim, H. K. Kim, and J. S. Lee (2004) Production and characterization of keratinase from Paracoccus sp. WJ-98. Biotechnol.Bioprocess Eng. 9: 17-22 https://doi.org/10.1007/BF02949317
  37. Nimmi, M. E. (2000) Collagen Metabolism. pp. 25-31. Collagen. CRC Press, Inc., Boca Raton, Florida, USA
  38. Bae, M. and P. Y. Park (1989) Purification and characterization of thermotolerable alkaline protease by alkalophilic Bacillus sp. No. 8-16. Kor. J. Appl. Microbiol. Biotechnol. 17: 545-551
  39. Takami, H., T. Akiba, and K. Horikoshi (1990) Characterization of an alkaline protease from Bacillus sp. No. AH-101. Appl. Microbiol. Biotechnol. 33: 519-523
  40. Yu, M. S. and C. Y. Lee (1999) Expression and characterization of the prtV gene encoding a collagenase from Vibrio parahaemolyticus in Escherichia coli. Microbiology 145: 143-150 https://doi.org/10.1099/13500872-145-1-143
  41. Takeuchi, H., Y. Shibano, K. Morihara, J. Fukushima, S. Inami, B. Keil, A. M. Gilles, S, Kawamoto, and K. Okuda (1992) Structure gene and complete amino acid sequence of Vibrio alginolyticus collagenase. Biochem. J. 281: 703- 708 https://doi.org/10.1042/bj2810703
  42. Lee, J. H., G. T. Kim, J. Y. Lee, H. K. Jun, J. H. Yu, and I. S. Kong (1998) Isolation and sequence analysis of metalloprotease gene from Vibrio mimicus. Biochim. Biophys. Acta 1384: 1-6 https://doi.org/10.1016/S0167-4838(97)00205-7
  43. Kim, B. J., H. J. Kim, S. H. Hwang, S. K. Bae, S. D. Ha, J. D. Kim, and J. Y. Kong (1998) Cloning and expression of a collagenase gene from the marine bacterium Vibrio vulnificus CYK279H. J. Microbiol. Biotechnol. 8: 245-250
  44. Sasagawa, Y., K. Izaki, Y. Matsubara, K. Suzuki, H. Kojima, and Y. Kamio (1995) Molecular cloning and sequence analysis of the gene encoding the collagenase from Cytophaga sp. L43-1 strain. Biosci. Biotechnol. Biochem. 59: 2068-73 https://doi.org/10.1271/bbb.59.2068