Comparison of frictional forces between orthodontic brackets and archwires

교정용 브라켓과 호선 간의 마찰 저항력의 비교

  • Suh, Chung-Whan (Department of Orthodontics, College of Dentistry, Wonkwang University) ;
  • Jung, Hye-Seung (Department of Orthodontics, College of Dentistry, Wonkwang University) ;
  • Cho, Jin-Hyoung (Department of Orthodontics, College of Dentistry, Wonkwang University) ;
  • Kang, Kyung-Hwa (Department of Orthodontics, College of Dentistry, Wonkwang University)
  • 서충환 (원광대학교 치과대학 교정학교실) ;
  • 정혜승 (원광대학교 치과대학 교정학교실) ;
  • 조진형 (원광대학교 치과대학 교정학교실) ;
  • 강경화 (원광대학교 치과대학 교정학교실)
  • Published : 2005.04.01

Abstract

The object of this study was to evaluate how friction that occurs during the sliding movement of an orthodontic archwire through orthodontic brackets is differently affected by variant designs and ingredients of brackets and archwires and bracket-archwire angles. In order to simulate the situations which could occur during orthodontic treatment with fixed appliances, 4 types of brackets (Gemini, a stainless steel twin bracket, Mini Uni-Twiu. a stainless steel bracket with a single bracket design and narrow mesio-distal width; Clarity, a metal-reinforced ceramic bracket; Transcend, a ceramic bracket) and 3 types of orthodontic archwires $(0.016',\; 0.016{\times}0.022'\;stainless\;steel,\;0.016'\;Nitinol)$ were used and the bracket-archwire angles were controlled as $0^{\circ},\;3^{\circ}\;6^{\circ},\;and\;9^{\circ}$ Gemini significantly show and the lowest static and kinetic frictions (P<0.001) Clarity showed the highest static and kinetic frictions with a bracket-archwire angle of $0^{\circ}$. and Transcend at $6^{\circ}\;and\;9^{\circ}$ (P<0.001). An $0.016{\times}0.022'$ stainless steel rectangular archwire significantly showed the highest static and kinetic frictions (P<0.01). The lowest static and kinetic frictions were observed when the bracket-archwire angles were $0^{\circ}\;and\;3^{\circ}$ with 0.010' stainless steel round archwires (P<0.01), and $6^{\circ}\;and\;9^{\circ}$ with 0.016 Nitinol (P<0.001). The static and kinetic frictions were increased as the bracket-archwire angles were increased (P<0.001)

본 연구는 고정성 장치를 이용한 교정 치료에서 브라켓과 교정용 호선 사이의 활주 이동 동안 발생하는 마찰력에 디자인과 재질이 다른 각각의 브라켓과 여러 종류의 호선 다양한 브라켓-호선 각도 등이 어떤 영향을 미치는가를 알아보기 위하여 4종의 브라켓 (stainless steel twin 브라켓인 Gemini, 좁은 근원심 폭경과 single bracket의 디자인이 포함된 Mini Uni-Twin. metal-reinforced 세라믹 브라켓인 Clarity. 세라믹 브라켓인 Transcend)을 사용하고, 3종의 교정용 호선(0.015"$0.010\times0.022"$ stainless steel 호선, 0.010" Nitinol)을 이용하여 브라켓-호선 각도를 각각 $0^{\circ},\; 3^{\circ}8^{\circ},\; 9^{\circ}$로 조절하면서 실험한 결과, Gemini는 유의하게 가장 낮은 정지, 운동 마찰력을 보였으며 (P<0.001). Clarity는 $0^{\circ}$의 브라켓-호선 각도에서 Transcend는 $5^{\circ}와\;9^{\circ}$의 각도에서 유의하게 가장 높은 정지, 운동 마찰력을 보였고 (P<0.001) $0.016{\times}0.022"$ stainless steel 각형 호선은 유의하게 가장 높은 정지, 운동 마찰력을 보였으며 (P<0.01). 0.016" stainless steel 원형 호선은 $0^{\circ}와\;3^{\circ}$의 브라켓-호선 각도에서 (P<0.01), 0.016" Nitinol은 $8^{\circ}와\;9^{\circ}$의 각도에서 (P<0.001) 유의하게 가장 낮은 정지. 운동 마찰력을 보였고 브라켓-호선 각도가 증가함에 따라 유의하게 정지, 운동 마찰력도 증가하였다 (P<0.001)

Keywords

References

  1. Graber TM, Swain BF. Current orthodontic concepts and techniques. Philadcphia: Saunders, 1975;193-227
  2. Reitan K. Some factors detennining the evaluation of forces in orthodontics. Am J Orthod 1957;43:32-45 https://doi.org/10.1016/0002-9416(57)90114-8
  3. Stoner MM. Force control in clinical practice. Am J Orthod 1960;46:163-8 https://doi.org/10.1016/0002-9416(60)90080-4
  4. 장시호, 권오원, 김교한. TiN 피막 처리된 교정 장치물의 마찰저항력에 관한 비교연구. 대치교정지 1993;23:671-91
  5. 곽춘, 김진범, 순우성. 시간경과에 따른 교정용 bracket과 교정선 사이의 마찰력 변화에 관한 연구. 대치교정지 1993;23:283-94
  6. Hain M, Dhopatkar A, Rock P. The effect of ligation method on friction in sliding mechanics. Am J Orthod Dentofacial Orthop 2003;123:416-22 https://doi.org/10.1067/mod.2003.14
  7. 이재환, 이기수. 교정용 브라켓과 강선 사이의 운동마찰저항력에 관한 실험적 연구. 대치교정지 2001;31:467-77
  8. Pratten DH, Popli K, Germane N, Gunsolley JC. Frictional resistance of ceramic and stainless steel orthodontic brackets. Am J Orthod Dentofacial Orthop 1990;98:398-403 https://doi.org/10.1016/S0889-5406(05)81647-6
  9. Bednar JR, Gruendeman GW, Sandrik JL. A comparative study of frictional forces between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 1991;100:513-22 https://doi.org/10.1016/0889-5406(91)70091-A
  10. Angolkar PV, Kapila S, Duncanson MG, Nanda RS. Evaluation of friction between ceramic brackets and orthodontic wires of four alloys. Am J Orthod Denofacial Orthop 1990;98:499-506 https://doi.org/10.1016/0889-5406(90)70015-5
  11. Tidy DC. Frictional forces in fixed appliances. Am J Orthod Dentofacial Orthop 1989;96:249-54 https://doi.org/10.1016/0889-5406(89)90462-9
  12. 민정미, 서정훈. 치아의 활주 이동시 교정용 브라켓과 와이어 사이에서 발생하는 마찰 저항력에 관한 비교연구. 대치교정지 1988;18:155-62
  13. Kusy RP. Morphology of polycrystalline alumina brackets and its relationship to fracture toughness and strength. Angle Orthod 1988;58:197-203
  14. Michelberger DJ, Eadie RL, Faulkner MG, Glover KE, Prasad NG, Major PW. The friction and wear patterns of orthodontic brackets and archwires in the dry state. Am J Orthod Dentofacial Orthop 2000;118:662-74 https://doi.org/10.1067/mod.2000.105529
  15. Kapila S, Angolkar PV, Nanda RS. Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys. Am J Orthod Denofacial Orthop 1990;98:117-26 https://doi.org/10.1016/0889-5406(90)70005-W
  16. Frank CA, Nikolai RJ. A comparative study of frictional resistances between orthodontic bracket and arch wire. Am J Orthod 1980;78:593-609 https://doi.org/10.1016/0002-9416(80)90199-2
  17. Tselepis M, Brockhurst P, West VC. The dynamic frictional resistance between orthodontic brackets and arch wires. Am J Orthod Dentofacial Orthop 1994;106:131-8 https://doi.org/10.1016/S0889-5406(94)70030-3
  18. Kusy RP, Whitley JQ. Influence of archwire and bracket dimensions on sliding mechanics: derivations and detenninations of the critical contact angles for binding. Eur J Orthod 1999;21:199-208 https://doi.org/10.1093/ejo/21.2.199
  19. Kusy RP, Whitley JQ. Friction between different wire-bracket configurations and materials. Semin Orthod 1997;3:166-77 https://doi.org/10.1016/S1073-8746(97)80067-9
  20. 박상준, 한두희, 김진명, 최강호 역. Paul E, Tippens 저. 일반물리학. 서울: 한올출판사; 1999;50-3
  21. Thurow, RC. Elastic ligature, binding forces, and anchorage taxation. Am J Orthod 1975;67:694 https://doi.org/10.1016/0002-9416(75)90146-3
  22. Baker KL, Nieberg LG, Weimer AD, Hanna M. Frictional changes in force values caused by saliva substitution. Am J Orthod Dentofacial Otthop 1987;91:316-20 https://doi.org/10.1016/0889-5406(87)90173-9
  23. Stannard JG, Gau JM, Hanna MA. Comparative friction of orthodontic wires under dry and wet conditions. Am J Orthd Dentofacial Orthop 1986;89:485-91 https://doi.org/10.1016/0002-9416(86)90006-0
  24. 황현식, 박영철. 인공타액하에서 수종 교정선의 마찰력에 관한 실험적 연구. 대치교정지 1989;19:245-56
  25. Garner LD, Allai WW, Moore BK. A comparison of frictional forces during simulated canine retraction of a continuous edgewise arch wire. Am J Orthod Dentofacial Orthop 1986;90:199-203 https://doi.org/10.1016/0889-5406(86)90066-1
  26. 고정석. 인공 타액하에서 교정선과 bracket간의 마찰력에 대한 연구. 대치교정지 1988;18:55-63
  27. 성현미. 교정용 bracket과 archwire 사이의 마찰저항에 대한 비교 연구. 대치교정지 1991;21:543-59
  28. Proffit WR, Fields HW. Contemporary orthodontics. St Louis: Mosby; 2000;385-416, 556
  29. 조명숙, 김종철. 고정성 교정장치를 이용한 치아 이동시 발생되는 마찰력. 대치교정지 1990;20:409-17