Synthesis of Alumina-Silica ceramic armor materials(I)

알루미나-실리카계 세라믹복합체 방탄재료 연구(I)

  • 김철수 (명지대학교 신소재공학과) ;
  • 이형복 (명지대학교 신소재공학과)
  • Published : 2005.12.01

Abstract

In this study, we tried to invent ceramic armor material with brilliant ballistic properties by the silica of the high compression-expansion ratio and based on alumina that has the most economical and higher ballistic efficiency. After we choose three compositions, proper sintering temperature for each composition was decided. After physical/mechanical measurement, we measured ballistic properties about KE(Kinetic Energy, L/D=10.7, tungsten heavy alloy) and HEAT(High Explosive Anti-Tank, K215) projectiles. As a result, $46\%\;Al_2O_3\;-\;51\%\;SiO_2$ of three compositions had the highest ballistic efficiency md better properties than alumina.

본 연구에서는 세라믹 방탄재료개발을 위해 가장 경제적이고 방탄물성이 높은 알루미나를 기본으로 하여 압축-팽창률이 높은 실리카를 첨가하여 방탄물성이 우수한 세라믹 방탄재료를 개발하고자 하였다. 3가지 조성을 선정하였으며 각각 조성에 적합한 소결온도를 설정하였다. 물리/기계적 물성을 측정한 후 K215 자탄을 기폭시켜 성형 작약(HEAT)탄에 대한 방탄물성을 측정하였으며, 30mm 고체추진포에서 10.7의 L/D비를 갖는 팅스텐 긴 관통자를 비행시켜 운동에너지(KE)탄에 대한 방탄물성을 측정하여 분석하였다. 그 결과 $46\%\;Al_2O_3\;-\;51\%\;SiO_2$가 가장 높은 방탄물성을 나타내었으며 알루미나에 비해 매우 우수한 방탄재료로 평가되었다.

Keywords

References

  1. 최준홍, 김창욱, 장순남, '초고속 Jet 의 취성재료 관통현상,' 제10회 지상무기체계발전세미나 논문집, 국방과학연구소, 2002, pp. 126-129
  2. J. H. Choi, C. H. Lee, S. N. Chang, S. K. Moon, 'Long-Rod Impact Phenomena: Role of Wave Interaction on Crack Propagation,' Int. J. Impact Engng., VOL.17, 1995, pp. 195-204 https://doi.org/10.1016/0734-743X(95)99846-J
  3. L. A. Glenn, B. Moran, A. S. Kusubov, 'Jet penetration in glass,' International conference on mechanical and physical behavior of materials under dynamic loading (3rd), Strasbourg (France), Oct. 1991, pp. 14-18
  4. T. J. Holmquist, A. M. Rajendran, D. W. Templeton and K. D. Bishnoi, 'A Ceramic Armor Material Database,' TARDEC Technical Report #13754, 1999, pp. 210-240
  5. T. J. Moynihan, S. Chou, A. Mihalcin, 'Application of the Depth-of-Penetration Test Methodology to Characterize Ceramics for Personnel Protection,' Final rept. ARL-TR-2219; ADA376698, Jan 1998-Aug 1999, pp. 40-43
  6. M.D. Sacks, K. Wang, G.W. Scheiffele, N. Bozkurt, 'Effect of Composition on Mullitization Behavior of ${\alpha}-Aulmina/Silica$ Micro-composite Powders,' J. Am. Ceram. Soc., VOL. 80, NO. 3, 1997, pp. 663 https://doi.org/10.1111/j.1151-2916.1997.tb02882.x
  7. M.D. Sacks, K. Wang, G.W. Scheiffele, N. Bozkurt, 'Activation Energy for Mullitization of ${\alpha}-Alumina/Silica$ Microcomposite Particles,' J. Am. Ceram. Soc., VOL. 79, NO. 2, 1996, pp. 571 https://doi.org/10.1111/j.1151-2916.1996.tb08173.x
  8. D.X. Li, W.J. Thompson, 'Kinetic Mechanisms for the Mullite Formation from Sol-Gel Pre cursors,' J. Mater. Res., VOL. 5, NO. 9, 1990, pp. 1963 https://doi.org/10.1557/JMR.1990.1963
  9. W. C. Wei J. W. Halloran, 'Transformation Kinetics of Diphasic Aluminum Silicate Gels,' J. Am. Ceram. Soc.., VOL. 71, NO. 7, 1988, pp. 581 https://doi.org/10.1111/j.1151-2916.1988.tb05923.x
  10. J. C. Huling, G. L. Messing, 'Epitactic Nucleation of Spinel in Aluminium Silicate Gels and Effect on Mullite Crystallization,' J. Am. Ceram. Soc., VOL. 74, NO. 10, 1991, pp. 2374-2381 https://doi.org/10.1111/j.1151-2916.1991.tb06771.x
  11. S. Sundaresan, I. A. Aksay, 'Mullitization of Diphasic Aluminosilicate Gels,' J. Am. Ceram. Soc., VOL. 74, NO. 10, 1991, pp. 2388-2392 https://doi.org/10.1111/j.1151-2916.1991.tb06773.x
  12. J. Cagnoux, 'Spherical Waves in Pure Alumina. Effects of Grain Size on Flow and Fracture,' Shock Compression of Condensed Matter, 1990, pp. 445-448
  13. D. J. Viechnicki, M. J. Slavin, M. I. Kliman, 'Development and Current Status and Armor Ceramics,' Ceram. Bull., VOL. 70, NO. 6, 1991, pp. 1035-1039
  14. Z. Rozenberg, M. A. Meyers, 'Effect of Stress State and Microstructural Parameters on Impact Damage of Alumina-Based Ceramics,' J. Impact Eng., VOL. 7, NO. 3, 1988, pp. 357-362 https://doi.org/10.1016/0734-743X(88)90035-8
  15. L. H. L. Louro, M. A. Meyers, 'Effects of Stress State and Microstructural Parameters on Impact Damage of Alumina-Based Ceramics,' J. Mater. Sci., 24, 1989, pp. 2516-2532 https://doi.org/10.1007/BF01174523