DOI QR코드

DOI QR Code

Effects of Oligosaccharide-Supplemented Soy Ice Cream on Oxidative Stress and Fecal Microflora in Streptozotocin-Induced Diabetic Rats

당뇨쥐에서 올리고당 첨가 콩아이스크림이 산화스트레스와 장생태에 미치는 효과

  • 허보영 (대구대학교 식품영양학과) ;
  • 성혜영 (대구대학교 식품영양학과) ;
  • 최영선 (대구대학교 식품영양학과)
  • Published : 2005.12.01

Abstract

We have investigated physiological effects of soy ice cream with oligosaccharide on oxidative stress and fecal microflora in streptozotocin-induced diabetic rats. Parched soybean powder (7.6$\%$, w/w) substituted skimmed milk and cream, soybean oil (7.6$\%$, w/w) for milk oil, and fructooligosaccharide (9.5$\%$, w/w) for sucrose. Five types of ice cream were prepared: regular, oligosaccharide-supplemented regular, soy, oligosaccharide - supplemented soy, and oligosaccharide - supplemented black soybean ice cream . Freeze - dried ice cream was supplemented to AIN93-based diets at 30$\%$ (w/w) containing 6.5$\%$ soy and 4.5$\%$ fructooligosaccharide. Diabetes was induced by intramuscular administration of streptozotocin, and experimental diets were given for 4 weeks. Plasma concentration of thiobarbituric acid reactive substances (TBARS) was significantly increased in the diabetic rats compared with the normal rats, then was significantly decreased with feeding soy ice cream containing diet compared with regular ice cream containing diet among the diabetic groups. The levels of TBARS in liver were decreased in the rats that were fed either soy or oligosaccharide ice cream compared with the rats that were fed regular ice cream. Erythrocyte superoxide dismutase activity was significantly increased in the rats fed soy ice cream compared with the rats fed regular ice cream. Erythrocyte glutathione peroxidase and catalase activities were significantly increased in the rats fed black soybean ice cream. Fecal concentrations of Lactobacilli were significantly higher in the rats fed soy ice cream and oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. Fecal concentrations of Bifidobacteria were significantly higher in the rats fed oligosaccharide- supplemented soy ice cream than that of the rats fed regular ice cream. In conclusion, oligosaccharide- supplemented soy ice cream suppressed lipid peroxidation and improved the got microbiota in diabetic rats compared with milk-based regular ice cream.

본 연구에서는 당뇨환자를 위한 아이스크림을 개발할 목적으로 아이스크림의 주원료인 우유단백질, 유지방과 설탕의 일부를 노란콩과 검정콩, 대두유 및 프럭토올리고당으로 대체한 아이스크림을 제조하여 동물실험을 통하여 산화스트레스 완화와 장 미생물생태 개선에 미치는 효과를 규명하였다. 동결건조한 아이스크림을 AIN-93 식이의 $30{\%}$수준으로 첨가하여 실험식이를 제조하였다. 5주령 된 Sprague Dawley 종 수컷 쥐를 당뇨를 유발하지 않은 정상군과 당뇨군 5군으로 나누고, streptozotocin으로 당뇨를 유발하고, 실험식이를 자유롭게 4주 동안 섭취시켰다. 희생된 쥐의 장기와 혈액을 취하고, 항산화능 및 장내미생물생태에 미치는 효과를 측정하여 다음과 같은 결과를 얻었다. 혈장의 지질과 산화물 농도는 당뇨군이 정상군보다 유의하게 높았다. 당뇨군 중에서 콩아이스크림군과 올리고당첨가 검정콩아이스크림군이 우유아이스크럼군에 비해 혈장 지질과산화물의 농도가 유의하게 낮았으며, 올리고당 첨가 우유아이스크림과 올리고당 첨가 노란콩아이스크림을 섭취한 군도 낮은 경향을 보였다. 간에서의 지질과산화물 농도는 우유아이스크림군만이 정상군에 비해 유의하게 높았으며, 올리고당 또는 콩 첨가 아이스크림군 모두 정상군과 유의한 차이를 보이지 않았다. 적혈구의 SOD 활성은 콩아이스크림군이 우유아이스크림군에 비하여 유의하게 높았다. 적혈구에서의 GSH-Px 활성과 catalase 활성은 올리고당첨가 검정콩아이스크림군이 다른 군에 비해 유의하게 높았다. 유익한 혐기성균인 Latobacilli 균수와 Bifidobacteria 균수가 올리고당첨가 콩아이스크림군에서 분변 중에 유의하게 증가하였으며, 콩아이스크림과 올리고당첨가 아이스크림도 우유아이스크림에 비해 유익한 세균의 증식을 촉진시켰다. 결론적으로 올리고당 첨가 콩아이스크림은 당뇨쥐에서 산화스트레스를 억제하고 장생태를 개선하는 효과를 보였다.

Keywords

References

  1. Cho NH. 2005. Prevalence of diabetes and management status in Korean population. Korean J Med 68: 1-2
  2. NSOK. 2003. Annual Report on the Cause of Death Statistics. National Statistical Office of Korea. Seoul. Korea
  3. Bonnefont-Rousselot D, Bastard JP, Jaudon MC, Delattre J. 2000. Consequences of the diabetic status on the oxidant/antioxidant balance. Diabetes Metab 26: 163-176
  4. Maritim AC, Sanders RA, Watkins JB 3rd. 2003. Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17: 24-38 https://doi.org/10.1002/jbt.10058
  5. Ihara Y, Toyokuni S, Uchida K, Odaka H, Tanaka T, Ikeda H, Hiai H, Seino Y, Yamada Y. 1999. Hyperglycemia causes oxidative stress in pancreatic beta-cells of GK rats a model of type 2 diabetes. Diabetes 48: 927-932 https://doi.org/10.2337/diabetes.48.4.927
  6. Her BY, Sung HY, Choi YS. 2005. Oligosaccharide-supplemented soy ice cream for diabetic patients: Quality characteristics and effects on blood sugar and lipids in streptozotocin-induced diabetic rats. Korean J Nutr 38: 663-671
  7. Busserolles J, Rock E, Gueux E, Mazor A, Grolier P, Rayssiguier Y. 2002. Short-term consumption of a high-sucrose diet has a pro-oxidant effect in rats. Br J Nutr 87: 337-342 https://doi.org/10.1079/BJN2002524
  8. Donald RB. 1995. Influence of dietary sucrose on biological aging. Am J Clin Nutr 62: 284S-293S https://doi.org/10.1093/ajcn/62.1.284S
  9. Kim KN, Joo ES, Kim KI, Kim SE, Yang HP, Jeon YJ. 2005. Effect of chitosan oligosacchardies on cholesterol level and antioxidant enzyme activities in hypercholesterolemic rat. J Korean Soc Food Sci Nutr 34: 36-41 https://doi.org/10.3746/jkfn.2005.34.1.036
  10. Kim HY, Kim MH, Kim JY, Kim WK, Kim SH. 2003. Soybean oligosaccharide reduces oxidative stress in streptozotocin-injcctcd rats. Nutritional Sciences 6: 67-72
  11. Ruiz-Larrea MB, Mohan AR, Paganga G, Miller NJ, Bolwell GP, Rice-Evans CA. 1997. Antioxidant activity of phyto : estrogenic isoflavones. Free Radic Res 26: 63-70 https://doi.org/10.3109/10715769709097785
  12. Rodrigues HG, Diniz YS, Faine LA, Galhardi CM, Burneiko RC, Almeida JA, Ribas BO, Novelli EL. 2005. Antioxidant effect of saponin: potential action of a soybean flavonoid on glucose tolerance and risk factors for atherosclerosis. Int J Food Sci Nutr 56: 79-85 https://doi.org/10.1080/09637480500081738
  13. Bae EA, Moon GS. 1997. A study on the antioxidative activities of Korean soybeans. J Korean Soc Food Sci Nutr 26: 203-208
  14. Kim KS, Kim MJ, Park JS, Sohn HS, Kwon DY. 2003. Compositions of functional components of traditional Korean soybeans. Food Sci Biotechnol 12: 157-160
  15. Takahashi R, Ohmori R, Klyose C, Momiyama Y, Ohsuzu F, Kondo K. 2005. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J Agric Food Chem 53: 4578-4582 https://doi.org/10.1021/jf048062m
  16. Reeves PG, Nielsen FE, Fahey GC. 1993. AIN-93 purified diets for laboratory rodents: Final report of American Institute of Nutrition Ad Hoc Writing Committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  17. Marklund S, Marklund G. 1974. Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47: 469-474 https://doi.org/10.1111/j.1432-1033.1974.tb03714.x
  18. Flohe L. 1992. Determination of glutathione peroxidase. In GRC Handbook of Free Radicals and Antioxidants in Biomedicine. Miquel J, Quintanilha AT, Weber H, eds. CRC Press, Inc, Boca Roton, USA. Vol 3, p 281-286
  19. Aebi H. 1984. Catalase. In Methods of Enzymatic Analysis. 3rd ed. Bergmeyer HU, ed. Academic Press, New York, USA. Vol 2, p 673-684
  20. Hartemink R, Kok BJ, Weenk GH, Rombouts FM. 1996. Raffinose-bifidobacterium (RB) agar, a new selective medium for bifidobacteria. J Microbiol Methods 27: 33-43 https://doi.org/10.1016/0167-7012(96)00926-8
  21. Ji GE, Kim IH, Lee SK. 1994. Investigation of selective medium for isolation and enumeration of bacteroides sp. from the feces of the Korean people. Korean J Food Sci Technol 26: 295-299
  22. Maeng KJ, Kim JS, Ji GE, Kim JH. 1997. Isolation of bacteriocin-producing lactic acid from human intestines and the characteristics of their bacteriocins. J Korea Soc Food Sci Nutr 26: 1228-1236
  23. Robertson RP. 2004. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279: 42351-42354 https://doi.org/10.1074/jbc.R400019200
  24. Exner M, Hermann M, Hofbauer R, Kapiotis S, Quehenberger P, Speiser W, Held I, Gmeiner BM. 2001. Genistein prevents the glucose autoxidation mediated athrogenic modification of low density lipoprotein. Free Radic Res 34: 1010-112
  25. Busserolles J, Gueux E, Rock E, Demigne C, Mazur A, Rayssiguicr Y. 2003. Oligofructose protects against the hypertriglyceridemic and pro-oxidative effects of a high fructose diet in rats. J Nutr 133: 1903-1908
  26. Bhathena SJ, Velasquez MT. 2002. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am J Clin Nutr 76: 1191-1201 https://doi.org/10.1093/ajcn/76.6.1191
  27. Liu J, Chang SK, Wiesenborn D. 2005. Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo. J Agric Food Chem 53: 2333-2340 https://doi.org/10.1021/jf048552e
  28. Kim SH, Kwon TW, Lee YS, Choung MG, Moon GS. 2005. A major antioxidative components and comparison of antioxidative activities in black soybean. Korean J Food Sci Technol 37: 73-77
  29. Ryu SH, Moon GS. 2003. Antioxidative and antiaging effects of dietary yellow and black soybean in rats. J Korean Soc Food Sci Nutr 32: 591-597 https://doi.org/10.3746/jkfn.2003.32.4.591
  30. Ross D, Moldeus P. 1993. Antioxidant defense systems and oxidative stress. In CRC Membrane Lipid Oxidation. Vigo-Pelfrey C, ed. CRC Press Inc, Boston, USA. Vol II, p 151-170
  31. Djuric Z, Chen G, Doerge DR, Heilbrun LK, Kucuk O. 2001. Effect of soy isoflavone supplementation on markers of oxidative stress in men and women. Cancer Letters 172: 1-6 https://doi.org/10.1016/S0304-3835(01)00627-9
  32. Ettarh RR, Carr KE. 1997. A morphological study of the enteric mucosal epithelium in the streptozotocin-diabetic mice. Life Sciences 61: 1851-1858 https://doi.org/10.1016/S0024-3205(97)00809-6
  33. Zoubi SA, Mayhew TM, Sparrow RA. 1995. The small intestine in experimental diabetes: cellular adaptation in crypts and villi at different longitudinal sites. Virchows Arch 426: 601-507
  34. Tahara T, Yamamoto T. 1988. Morphological changes of the villous microvascular architecture and intestinal growth in rats with streptozotocin-induced diabetes. Virchows Arch A Pathol Anat Histophthol 413: 151-158 https://doi.org/10.1007/BF00749677
  35. Adachi t, Mori C, Sakurai K, Shihara N, Tsuda K, Yasuda K. 2003. Morphological changes and increased sucrase and isomaltase activity in small intestines of insulin-deficient and type 2 diabetic rats. Endocrine Journal 50: 271-279 https://doi.org/10.1507/endocrj.50.271
  36. Thulesen J, Hartmann B, Nielsen C, Holst JJ, Poulsen SS. 1999. Diabetic intestinal growth adaptation and glucagonslike peptide 2 in the rat: effects of dietary fibre. Gut 45:672-678 https://doi.org/10.1136/gut.45.5.672
  37. Elsenhans B, Zenker D, Caspary WF. 1984. Guaran effect on rat intestinal absorption. A perfusion study. Gastroenterology 86: 645-653
  38. Roediger WE. 1982. Utilization of nutrients by isolated epithelial cells for the rat colon. Gastroenterol 83: 424-429
  39. Tamura M, Hirayama K, Itoh K, Suzuki H, Shinohara K. 2002. Effects of soy protein-isoflavone diet on plasma isoflavone and intestinal microflora in adult mice. Nutrition Res 22: 705-713 https://doi.org/10.1016/S0271-5317(02)00378-0
  40. Choung MG, Lee JC. 2003. Functional characteristics of soybean oligosaccharide. Korean J Crop Sci 48: 58-64

Cited by

  1. Development of Ice Cream Prepared Lotus(Nelumbo nucifera Gaertner) Leaf and Seeds vol.21, pp.2, 2012, https://doi.org/10.5934/KJHE.2012.21.2.377
  2. Effects of ice creams supplemented with soy isoflavones on diabetic biomarkers in type II model mice vol.23, pp.1, 2014, https://doi.org/10.5934/kjhe.2014.23.1.137