DOI QR코드

DOI QR Code

Changes in Physicochemical Compounds with Heating Treatment of Ginseng

가열처리에 따른 인삼의 이화학적 성분변화

  • Yoon, Sung-Ran (Traditional Food institute, Kyongbuk College Science) ;
  • Lee, Myung-Hee (Dept. of Fermentation and Health Food, Kyongbuk College of Science) ;
  • Park, Jung-Hyun (The Confer for Traditional Microorganism Resources, Keimyung University) ;
  • Lee, In-Seon (The Confer for Traditional Microorganism Resources, Keimyung University) ;
  • Kwon, Joong-Ho (Dept.of Food Science and Technology, Kyungpook National University) ;
  • Lee, Gee-Dong (Dept. of Fermentation and Health Food, Kyongbuk College of Science, DG-Traditional Bio-Materials Industry Center)
  • 윤성란 (경북과학대학 전통식품연구소) ;
  • 이명희 (경북과학대학 발효건강식품과) ;
  • 박정현 (계명대학교 전통미생물자원개발 및 산업화연구센터) ;
  • 이인선 (계명대학교 전통미생물자원개발 및 산업화연구센터) ;
  • 권중호 (경북대학교 식품공학과) ;
  • 이기동 (경북과학대학 발효건강식품과, 대구신기술사업단 전통생물소재산업화센터)
  • Published : 2005.12.01

Abstract

Response surface methodology was used for monitoring changes in physicochemical properties with heating condition of ginseng which was sliced and freeze-dried. As heating temperature and time increased, soluble solid content decreased and browning color increased. Also, acidic polysaccharide and total phenolics increased with the increase in heating temperature and time. Heating condition for maximum soluble solid content was 146.05$^{\circ}C$ in heating temperature and 18.16 min in heating time. Maximum value of crude saponin content was 64.40 mg/g in 160.00$^{\circ}C$ and 20.00 min. Crude saponin content was influenced by heating time but the other properties were influenced by heating temperature.

인삼을 세절하여 동결건조 시킨 후 가열에 따른 성분변화의 특성을 살펴보고자 가열온도(130, 145, 160, 175, 190$^{\circ}C$) 및 가열시간(10, 15, 20, 23, 30 min)에 따른 중심합성실험계획으로 가열처리 하여 반응표면분석하였다. 그 결과, 가용성 고형분 함량의 경우 가열온도 및 가열시간이 증가할수록 감소하는 것으로 나타났으며 갈색도는 가별온도 및 가열 시간이 증가할수록 증가하는 것으로 나타났다. 또한 산성 다당체 함량, 총 폐놀성 화합물 함량도 가열온도 및 가열시간이 증가할수록 증가하는 것으로 나타났다. 가용성 고형분 함량은 가열온도 146.05$^{\circ}C$ 및 가열시간 18.16 min일 때 최대값 58$\%$로 예측되었으며, 조사포닌 함량은 160.00$^{\circ}C$ 및 가열시간 20.00 min일 때 64.40 mg/g의 최대값으로 예측되었다. 조사포닌 함량은 가열시간에 영향을 많이 받는 것으로 나타났으며, 가용성 고형분 함량, 산성다당체 및 총 페놀성 화합물 함량은 가열온도에 영향을 많이 받는 것으로 나타났다.

Keywords

References

  1. Nam KY, Ko SR, Choi KJ. 1998. Relationship of saponin and non-saponin for the quality of ginseng. J Ginseng Res 22: 274-283
  2. Hideo H, Ikuo S. 2003. Cancer prevention by ginseng via its intestinal bacterial metabolites. Art Village Inc., Tokyo, Japan. p 16-26
  3. Nam KY. 1996. The new Korean ginseng (constituent and its pharmacological efficacy). Korea Ginseng & Tobacco Research Institute, Taejon, Korea. p 57-99
  4. Lee BY. 2003. Status of Korean ginseng industry and development of new ginseng products. Food Ind Nutr 8: 1-9
  5. Mok CK, Song KT, Lee SK, Na YJ, Park JH, Kwon YA, Lee SJ 2001. Optimization of roasting process as pretreatment for extraction of Omija (Schieandra chinensis Baillon). Korean J Food Sci Technol 33: 333-337
  6. Kim HK, Lee BY, Shin DB, Kwon JH. 1998. Effects of roasting conditions on physicochemical characteristics and volatile flavor compounds of chicory roots. Korean J Food Sci Technol 30: 1279-1284
  7. Hong MJ, Lee GD, Kim HK, Kwon JH. 1998. Changes in functional and sensory properties of chicory roots induced by roasting process. Korean J Food Sci Technol 30: 413-418
  8. Kim JK, Ha WD, Ha JH, Moon KD, Chung SK. 1995. Changes of volatiles flavor components on roasting conditions in Cassia tora seeds. Korean J Food Sci Technol 27: 736-741
  9. Ryu KC, Chung HW, Lee GD, Kwon JH. 1997 Color changes and optimization of organoleptic properties of roasted Polygonatum odoratum tea. J Korean Soc Food Sci Nutr 26: 831-837
  10. Kwon JH, Ryu KC, Lee GD. 1997. Dynamic changes in browning reaction substrates of Polygonatum odoratum roots during roasting. J Korean Soc Food Sci Nutr 26: 654-661
  11. Kim MB, Kim DK, Lee GD, Kwon JH. 1998. Optimization of roasting conditions of Polygonatum odoratum roots by a pressure roaster. J Korean Soc Food Sci Nutr 27: 80-86
  12. Jeon SY, Kim EK, Kwak HM, Kim JY, Lim JH, Chung SK, Song KS. 2004. Changes in chemical composition and biological activities of oriental crude drugs by food processing techniques (II). Changes in paeonol contents in roasted moutan Cortex. Kor J Pharmacogn 35: 388-392
  13. Park MH, Park CK, Lee KS, Kim KC. 1996. Changes of ginsenosides in ginseng marc by roasting process. Korean J Ginseng Sci 20: 184-187
  14. Park MH, Kim KC, Kim JS. 1993. Changes in the physicochemical properties of ginseng by roasting. Korean J Ginseng Sci 17: 228-231
  15. Kwon JH, Ryu KC, Lee GD. 1997. Dynamic changes in brwoning reaction substrates of Polygonatum odoratum roots during roasting. J Korean Soc Food Sci Nutr 26: 654-661
  16. 1994. SAS/STAT User's Guide version 6. 4th ed. SAS Institute Inc., Cary, NC. Vol 2, Ch 37, p 1457-1478
  17. Namba T, Yoshizaki M, Tomimori T, Kobashi K, Matsui K, Hase J 1974. Fundamental studies on the evaluation of the crude drugs I. Chemical and biochemical evaluation of ginseng and realted crude drugs. Yakugaku Zasshi 94: 252-258 https://doi.org/10.1248/yakushi1947.94.2_252
  18. Ando T, Tanaka O, Shibata S. 1971. Chemical studes on the oriental plant durgs. (XXY) Comparative studies on the saponins and sapogenins of ginseng and related crude drugs. Yakugaku, Zasshi 25: 28-32
  19. Do JH, Lee HO, Lee SK, Jang JK, Lee SD, Sung HS. 1993. Colorimeteric determination of acidic polysaccharide from Panax ginseng, its extraction condition and stability. Korean J Ginseng Sci 17: 139-144
  20. Amerine MA, Ough CS. 1980. Methods for analysis of musts and win. Wiley & Sons, New York. p 176-180
  21. Kim SB, Do JR, Lee YW, Gu YS. 1990. Nitrite-scavenging effects of roasted-barley extracts according to processing conditions. Korean J Food Sci Technol 22: 748-752
  22. Suh CS, Chun JK. 1981. Relationships among the roasting conditions, colors and extractable solid content of roasted barley. Korean J Food Sci Technol 13: 334-339
  23. An YN, Lee SY, Choung MG, Choi KJ, Kang KH. 2002. Ginsenoside concentration and chemical component as affected by harvestin time of four-year ginseng root. Korean J Crop Sci 47: 216-220
  24. Choi KJ. 1991. Component and quality control of ginseng. Korean J Ginseng Sci 15: 247-256
  25. Nam KY. 2005. The comparative understanding between red ginseng and white ginsengs, processed ginsengs (Panax ginseng C.A.Meyer). J Ginseng Res 29: 1-19 https://doi.org/10.5142/JGR.2005.29.1.001
  26. Lee JW, Do JH, 2002. Extraction condition of acidic polysaccharide from Korean red ginseng marc. J Ginseng Res 26: 202-205 https://doi.org/10.5142/JGR.2002.26.4.202

Cited by

  1. Phenolic Acid Composition and Antioxidative Activity of Red Ginseng Prepared by High Temperature and High Pressure Process vol.25, pp.4, 2012, https://doi.org/10.9799/ksfan.2012.25.4.827
  2. Chemical conversion of ginsenosides in puffed red ginseng vol.44, pp.2, 2011, https://doi.org/10.1016/j.lwt.2010.09.013
  3. Physicochemical Properties and Composition of Ginsenosides in Red Ginseng Extract as Revealed by Subcritical Water Extraction vol.47, pp.6, 2015, https://doi.org/10.9721/KJFST.2015.47.6.757
  4. Oxidative stability of extracts from red ginseng and puffed red ginseng in bulk oil or oil-in-water emulsion matrix 2017, https://doi.org/10.1016/j.jgr.2017.04.002
  5. Changes in physicochemical characteristics and antioxidant activities of Jerusalem artichoke tea infusions resulting from different production processes vol.23, pp.6, 2014, https://doi.org/10.1007/s10068-014-0257-3
  6. Effects of Extrusion Conditions on the Physicochemical Properties of Extruded Red Ginseng vol.17, pp.3, 2012, https://doi.org/10.3746/pnf.2012.17.3.203
  7. Effects of extrusion cooking on physicochemical properties of white and red ginseng (powder) vol.38, pp.2, 2014, https://doi.org/10.1016/j.jgr.2013.12.002
  8. Monitoring of roasting-induced changes in ginsenoside composition of ginseng (Panax ginseng C.A. Meyer) vol.19, pp.1, 2010, https://doi.org/10.1007/s10068-010-0021-2
  9. The effect of extrusion conditions on the acidic polysaccharide, ginsenoside contents and antioxidant properties of extruded Korean red ginseng vol.37, pp.2, 2013, https://doi.org/10.5142/jgr.2013.37.219
  10. Effects of Puffed Red Ginseng Power and Drink on Blood Glucose and Serum Lipid Profile in Streptozotocin-Induced Diabetic Rats vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1415
  11. Optimization of Extraction of Marker Compounds from Red Ginsengs by Accelerated Solvent Extraction Using Response Surface Methodology vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1162
  12. Effects of moisture content and puffing pressure on extraction yield and antioxidant activity of puffed 21-year-old Platycodon grandiflorum roots vol.24, pp.4, 2015, https://doi.org/10.1007/s10068-015-0166-0
  13. Enhancement of Antioxidative Activity of Codonopsis lanceolata by Stepwise Steaming Process vol.20, pp.4, 2012, https://doi.org/10.7783/KJMCS.2012.20.4.238
  14. Effects of Puffed and Fermented Red Ginseng on Blood Glucose-related Biomarkers in Streptozotocin-Induced Diabetic Rats vol.41, pp.5, 2012, https://doi.org/10.3746/jkfn.2012.41.5.630
  15. Physiochemical Characteristics of Extruded Angelica gigas Nakai Depending on the Extrusion Processing Parameter vol.22, pp.5, 2014, https://doi.org/10.7783/KJMCS.2014.22.5.349
  16. Physicochemical and Sensory Characteristics of Hot Water Extracts of Codonopsis lanceolata Root Skin and Flesh with Different Heat Treatments vol.48, pp.2, 2016, https://doi.org/10.9721/KJFST.2016.48.2.104
  17. 팽화처리가 홍미삼의 품질특성에 미치는 영향 vol.31, pp.3, 2007, https://doi.org/10.5142/jgr.2007.31.3.147
  18. 증숙 횟수에 따른 고려인삼의 이화학적 특성 변화 vol.31, pp.4, 2007, https://doi.org/10.5142/jgr.2007.31.4.222
  19. Streptozotocin 유발 당뇨쥐에서 팽화가공 처리한 홍삼의 항당뇨 효과 vol.37, pp.6, 2008, https://doi.org/10.3746/jkfn.2008.37.6.701
  20. Comparison of Physicochemical Properties of Extruded Ginseng Samples vol.13, pp.4, 2005, https://doi.org/10.3746/jfn.2008.13.4.299
  21. 열처리 무 추출물의 이화학적 특성과 항산화 활성 vol.38, pp.4, 2009, https://doi.org/10.3746/jkfn.2009.38.4.490
  22. 인삼정과 제조과정에 따른 품질학적 특성 vol.38, pp.5, 2005, https://doi.org/10.3746/jkfn.2009.38.5.587
  23. 인삼 분말 첨가 쿠키의 품질 특성 vol.38, pp.11, 2005, https://doi.org/10.3746/jkfn.2009.38.11.1595
  24. Change of Physiological Activities of Chungkukjang according to the Addition Stage of Cornus officinalis, Heat Treatment and Salt Concentration vol.27, pp.6, 2005, https://doi.org/10.17495/easdl.2017.12.27.6.600
  25. Changes in Ginsenoside Compositions by High Temperature Processing under Various Soaking Conditions vol.23, pp.5, 2017, https://doi.org/10.3136/fstr.23.689
  26. 조리조건에 따른 은행알의 4'-O-methylpyridoxine (ginkgotoxin) 함량 및 항산화 활성 변화 vol.49, pp.5, 2005, https://doi.org/10.9721/kjfst.2017.49.5.532
  27. 가공방법이 다른 자색무(보르도무, 수박무)차의 품질 특성 및 항산화 활성 vol.30, pp.5, 2005, https://doi.org/10.9799/ksfan.2017.30.5.908
  28. 인삼 페이스트를 첨가하여 제조한 양갱의 품질 특성 vol.30, pp.6, 2017, https://doi.org/10.9799/ksfan.2017.30.6.1341
  29. 증숙 온도와 시간에 따른 4년근 인삼의 이화학적 특성 vol.27, pp.2, 2019, https://doi.org/10.7783/kjmcs.2019.27.2.86
  30. Changes in Ginseng Components Using the Pilot Plant Twin Screw Extruder Process vol.23, pp.4, 2005, https://doi.org/10.13050/foodengprog.2019.23.4.297
  31. Platycodon grandiflorumroots: A comprehensive study on odor/aroma and chemical properties during roasting vol.44, pp.9, 2005, https://doi.org/10.1111/jfbc.13344
  32. 증숙 더덕 에탄올 추출물에 대한 항산화·항균 활성 vol.34, pp.1, 2005, https://doi.org/10.9799/ksfan.2021.34.1.107
  33. Biofunctional properties of wild cultivated and cultivated Ginseng (Panax ginseng Meyer) extracts obtained using subcritical water extraction vol.56, pp.8, 2021, https://doi.org/10.1080/01496395.2020.1781893
  34. Comparison of the Physicochemical Characteristics and Antioxidant Activities of Watermelon Radish Flesh and Peel vol.32, pp.3, 2021, https://doi.org/10.7856/kjcls.2021.32.3.417
  35. Physicochemical properties and antioxidant activities of ginger (Zingiber officinale Roscoe) slices according to temperature and duration of hot water treatment vol.28, pp.6, 2005, https://doi.org/10.11002/kjfp.2021.28.6.716
  36. Anti-Aging Effects of Black Ginseng Extract via H2O2-Induced Oxidative Stress Regulation in Human Keratinocytes vol.50, pp.10, 2021, https://doi.org/10.3746/jkfn.2021.50.10.1019