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A Note on Eigenstructure of a Spatial Design Matrix in RF!

Hyoung-Moon Kim!) and Pablo Tarazaga?

Abstract

Eigenstructure of a spatial design matrix of Matheron’s variogram estimator in R!
is derived. It is shown that the spatial design matrix in R! with #/2<h{#n has a
nice spectral decomposition. The mean, variance, and covariance of this estimator are
obtained using the eigenvalues of a spatial design matrix. We also found that the
lower bound and the upper bound of the normalized Matheron’s variogram estimator.
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1. Introduction

Variogram estimation is an important step of spatial statistics since it determines the
kriging weights. To determine these weights, an optimal linear spatial predictor from the data
is commonly used and such spatial prediction is called kriging (Cressie, 1993). Matheron’s
classical variogram estimator of an intrinsic stationary spatial process,

{Y(x): xe DCR? d=1}, is as follows (Cressie, 1993):
W= S(Kx)=Xx)?, bR, NW={(x; ) xi~ 5= B
where N, is the cardinality of N ). This estimator can be expressed as a quadratic form,
2 R=y' 5 ARy, y=(Kx),....Kx)' (M

where the spatial design matrix, g —=ABIN is given by Genton(1998) and Gorsich et al.
(2002).

To understand the properties of Matheron’s variogram estimator in R!, we explore the
eigenstructure of a spatial design matrix in RL The spatial design matrix of Matheron’s
classical variogram estimator, A 2=A)/(n—h) of size yxy, is given in the unidimensional
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case (Genton, 1998) when data are regularly spaced:
A= nlhA(h)_ nlh(—I;:h ;ff;h) @
It is built by superposing identity matrices [, , of size (n—h)x(n—h). I kr{n/2,
superposition means that two elements located at the same place are added. Note that if data
are irregularly spaced, tolerance regions around j are often used (Cressie, 1993). There are
three possible matrices depending on } For example, the spatial design matrices of =4
after removing . 1/(x— k) are:

1 -1 00 10 -1 0 10 0-1

AD=|-12 =10} 42= 01 0 -1/, 4®={00 0 0{-
0-1 2 -1 -10 10 0000
00 —-11 0 -1 01 -10 01

Gorsich et al. (2002) explored the eigenstructures of spatial design matrices only for the
case of p{x/2, so we will extend the results on the case of #/2 <h<{n in R! since the
possible range of fis 0 to n. When j=2/p, the spatial design matrix is a special case of
Toeplitz matrix. In Section 2, the eigenstructure of a spatial design matrix is given. In
particular, it is shown that the spatial design matrix in R! with #/2< k< has a nice
spectral decomposition. In Section 3, the mean, variance, and covariance of Matheron’s
variogram estimator are provided using the results of Section 2. We also found that the lower
bound and the upper bound of the normalized Matheron’s variogram estimator. Finally, a brief
conclusion is offered in Section 4.

2. Eigenstructure

In this section, our attention will be on the eigenstructure of the jx matrix A, defined at
(2), where 5/2< k< n. Note that yamuk( A)=n—h due to the fact that we have an identity
left upper block of size x—}j and the fact that the last ;—} rows are the opposite of the
first 54— ones (which imply that they are linearly dependent).

If we denote A,(:,7) as the ;% column of A4, then it is clear that A,(:,h+9)=—A,(,7)
for ;=1,...,n—h This implies that two equations, which are going to be very useful, are

AL, D+A,C, h+9)=0 and 3
A D=ALGHD)=24,(,d, i=1,...,n—h. (4)

Now we define three families of vectors. If we denote g as the canonical vectors (1 in the
i# component and the rest zero), then we can define vectors y,=¢+e,,, and
u;=e;j—~e;r; 1=1,...,n—h Finally we have the following result.

Lemma 1 Given an integer j such that 2/2 < h{ n,
1) The vectors v, ©=1,...,n—h, and the vectors ¢ i i=n—h+1,...,h are in the null space of

Ay



Eigenstructure of a Spatial Design Matrix 655

2) The vectors u; i=1,...,n—h, satisfy the following equation
A=
Proof. First of all, observe that Auw; 1s equivalent to A4,(:,0)+A,(¢, k+2) given the structure

of vector gy, The sum is O because of equation (3). Using the same argument, we find that

A=A, i=n—h+l1,...,h Note that these columns are zero columns, so the result

follows. Finally A,u;_A,(:,9)—A,(,k+7) and, using equation (4), we obtain Ahu,:_n%z u;

Therefore, eigenvalues of A, are 2/(n—h) with multiplicity »—4 and 0 with multiplicity
I Corresponding eigenvectors are w; i=1,...,n—h, v; i=1,...,n—h and e, i=n—h+1,...,h,
respectively.

Now we can define the following matrices,

Uy_p

N TP o L ] <
Q \/§ ;/2 €n—h+1 eh7§> :;2 ’ n/z-h(n,
and a diagonal matrix , whose diagonal elements are 0 for the first j entries and
2/(n— k) for the rest.

Lemma 2 The matrix A, can be factorized as follows:

A=QAQ.
Proof. This result is clear from the facts that O is the eigenvalues for the eigenvectors
v, ©=1,...,n—h and ¢; j=n—h+1,...,h It is also straightforward to verify that the matrix
Q is an orthonormal matrix.

So the matrix A4, has a very nice spectral decomposition.
3. Matheron’s Variogram Estimator

The properties of Matheron’s variogram estimator can be explained as functions of a spatial
design matrix, A, and the actual covariance matrix of the data, . The mean and

variance of this estimator can be obtained using all the eigenvalues of A, and are described

in the next Lemma. A Gaussian assumption can be generalized to elliptical distributions with
kurtosis parameter 0(Genton, 2000), skew Gaussian distributions (Genton et al, 2001) or skew
t distributions (Kim and Mallick, 2003).

Theorem 1 If . n (@, Where gy 1, p,=Ey), i=1,...,n and Q=¢%I, then the
sample variogram estimator (1) with A ,=A(k)/(n— k) and 2/2< h<{ n, satisfies:
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D Ky A, =t{AD=2
2) Var y'A,3)=2tM(A ,Q D=86*/(n—h),
and for % ,<h,

3) Cbl(ythhly, y'Ahzy) =2t7(Ahl.QAhZQ=4O'4/(7L—h1).

Proof. In general, if y~N 1,9 then HytA,9)=t{AQ+u'Auye Vay'A,)~
2((AQDHp'Ay Qs and Gl y*'A, Y, ¥4, =20 A R4, Q+Hip'A, QA Since
A,l,=0 by the property of A, first equalities at 1), 2), and 3) are clear. This fact was
commented by one of the referees. The sum of all eigenvalues of a matrix is the trace of the
matrix and an eigenvalue of A* is A% where ) is an eigenvalue of A and k>] is an
integer. The form for the covariance follows the same reasoning, but the trace of AhlAh2 is
needed. This trace has been found in Genton(1998) as 2/(n—#h,), Where jp,(h, and
h,+hy=n Now the entire Theorem is proved.

Above results can be used at Generalized least squares method (Genton, 1998). One of the
referees noted this potential application of Theorem. We note that the variance of the sample
variogram estimator is an increasing function of lag } So the variance of the sample
variogram will go to the infinity as lag % goes to 4 Furthermore we can easily find the
lower bound and the upper bound of the normalized form of Matheron’s estimator YAy Yy
using the eigenvalues of A, The normalization constant is in fact (), the covariogram at
lag 0. Suppose that the spatial process is second order stationary, so that A %)= 0)—dAh)-
The minimum (maximum) eigenvalue is the lower (upper) bound of the normalized quadratic
form, respectively. That is (< yt4 W] ¥ty<2/(n—h)- Moreover, there are well established

bounds on normalized covariograms(Yaglom, 1987a; Yaglom, 1987b).
4. Conclusion

Eigenstructure of a spatial design matrix of Matheron’s variogram. estimator in R! with
n/2< h{n was derived at Section 2. In particular, it was shown that the spatial design
matrix in R! with 54/2< h{n has a nice spectral decomposition. Using the eigenstructure
of a spatial design matrix, we derived the mean, variance, and covariance of Matheron's
variogram estimator and we found that the lower bound and the upper bound of the
normalized quadratic form at Section 3.
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