DOI QR코드

DOI QR Code

Altered Sulfate Metabolism of Arabidopsis Caused by Beet Severe Curly Top Virus Infection

  • Lee, Hong-Gun (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Park, Sung-Hee (Department of Genetic Engineering, Sungkyunkwan University) ;
  • Kim, Dong-Giun (Center for Plant Environmental Stress Physiology, Purdue University) ;
  • Lee, Taek-Kyun (South Sea Institute, Korean Ocean Research and Development Institute) ;
  • Yum, Seung-Shic (South Sea Institute, Korean Ocean Research and Development Institute) ;
  • Auh, Chung-Kyoon (Division of Applied Biotechnology, Mokpo National University) ;
  • Lee, Suk-Chan (Department of Genetic Engineering, Sungkyunkwan University)
  • Published : 2005.12.01

Abstract

Sulfur, an important component of plants, is regulated by a variety of stresses in sulfate assimilation and metabolism. Increase has been observed in the expression of O-acetylserine(thiol)lyase (OASTL) through two-dimensional electrophoresis with the shoot tips of Arabidopsis infected by beet severe curly top geminivirus (BSCTV). With the three- to six-fold increases in the transcript expression of OASTL, serine acetyltransferase (SAT) and $\gamma$-glutmylcysteine synthetase (GSH) were induced over the mock-inoculated organization in each organization through real-time RT-PCR analysis. The expression of those genes might affect the accumulation of anthocyanin in symptomatic tissues and the induction of abnormal callus-like structures formed by additional cell divisions as typical disease symptoms of BSCTV-infected Arabidopsis. This is the first report to describe the collaborative induction of OASTL, SAT, and GSH in virus-infected plants. The changed expressions of OASTL, SAT, and GSH in Arabidopsis infected with BSCTV raises new aspects regarding the biological function of symptomatic tissues related to sulfate metabolism.

Keywords

References

  1. Alfenito, M. R., Sauer, E., Goodman, C. D., Buell, R., Mol, J., Koes, R. and Walbot, V. 1998. Functional Complementation of Anthocyanin Sequestnition in the Vacuole by Widely Divergent Glutathione S-Transferases. Plant Cell 10:1135-1150 https://doi.org/10.1105/tpc.10.7.1135
  2. Che, P., Gingerich, D. J., Lall, S. and Howell, S. H. 2002. Global and hormone-induced gene expression changes during shoot development in Arabidopsis. Plant Cell 14:2771-2785 https://doi.org/10.1105/tpc.006668
  3. Dominguez-Solis, J. R., Gutierrez-Alcala, G., Romero, L. C. and Gotor, C. 2001. The Cytosolic O-Acetylserine(thiol)lyase Gene Is Regulated by Heavy Metals and Can Function in Cadmium Tolerance. J. Biol. Chem. 276:9297-9302 https://doi.org/10.1074/jbc.M009574200
  4. Edwards, R., Dixon, D. P. and Walbot, V. 2000. Plant glutathione S-transferases: enzymes with multiple functions in sickness and in health. Trends Plant Sci. 5:193-198 https://doi.org/10.1016/S1360-1385(00)01601-0
  5. Gutierrez-Alcala, G., Gotor, C., Meyer, A. J., Fricker, M., Vega, J. M. and Romero, L. C. 2000. Glutathione biosynthesis in Arabidopsis trichome cells. Proc. Natl. Acad. Sci. USA 97:11108-11113 https://doi.org/10.1073/pnas.190334497
  6. Hesse, H., Lipke, J., Altmann, T. and Bofgen, R. 1999. Molecular cloning and expression analyses of mitochondrial and plastidic isoforms of cysteine synthase (O-acetylserine(thiol)lyase) from Arabidopsis thaliana. Amino Acids 16:113-131 https://doi.org/10.1007/BF01321531
  7. Hirai, M. Y., Fujiwara, T., Awazuhara, M., Kimura, T., Noji, M. and Saito, K. 2003. Global expression profiling of sulfurstarved Arabidopsis by DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J. 33:651-663 https://doi.org/10.1046/j.1365-313X.2003.01658.x
  8. Hofgen, R., Kreft, O., Willmitzer, L. and Hesse, H. 2001. Manipulation of thiol contents in plants. Amino Acids 20:291-299 https://doi.org/10.1007/s007260170045
  9. Howarth, J. R., Dominguez-Solis, J. R., Gutierrez-Alcala, G., Wray, J. L., Romero, L. C. and Gotor, C. 2003. The serine acetyltransferase gene family in Arabidopsis thaliana and the regulation of its expression by cadmium. Plant Mol. Biol. 51:589-598 https://doi.org/10.1023/A:1022349623951
  10. Latham, J. R., Saunders, K., Pinner, M. S. and Stanley, J. 1997. Induction of plant cell division by beet curly top virus gene C4. Plant J. 11:1273-1283 https://doi.org/10.1046/j.1365-313X.1997.11061273.x
  11. Lee, S., Stenger, D. C., Bisaro, D. M. and Davis, K. R. 1994. Identification of loci in Arabidopsis that confer resistance to geminivirus infection. Plant J. 6:525-535 https://doi.org/10.1046/j.1365-313X.1994.6040525.x
  12. Leustek, T. and Saito, K. 1999. Sulfate Transport and Assimilation in Plants. Plant Physiol. 120:637-644 https://doi.org/10.1104/pp.120.3.637
  13. Marrs, K. A. 1996. The functions and regulation of glutathione stransferases in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:127-158 https://doi.org/10.1146/annurev.arplant.47.1.127
  14. Maruyama-Nakashita, A., Nakamura, Y., Yamaya, T. and Takahashi, H. 2004. A novel regulatory pathway of sulfate uptake in Arabidopsis roots: implication of CRE1/WOL/AHK4-mediated cytokinin-dependent regulation. Plant J. 38:779-789 https://doi.org/10.1111/j.1365-313X.2004.02079.x
  15. Nesi, N., Debeaujon, I., Jond, C., Pelletier, G., Caboche, M. and Lepiniec, L. 2000. The TT8 gene encodes a basic helix-loop-helix domain protein required for expression of DFR and BAN genes in Arabidopsis siliques. Plant Cell 12:1863-1878 https://doi.org/10.1105/tpc.12.10.1863
  16. Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H. and Hoefgen, R. 2003. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J. 33:633-650 https://doi.org/10.1046/j.1365-313X.2003.01657.x
  17. Nocito, F. F., Pirovano, L., Cocucci, M. and Sacchi, G. A. 2002. Cadmium-Induced Sulfate Uptake in Maize Roots. Plant Physiol. 129:1872-1879 https://doi.org/10.1104/pp.002659
  18. Park, E., Hwang, H. and S. Lee. 1999. Molecular analysis of geminivirus ORFs on symptom development. Plant Pathol. J. 15:38-43
  19. Saito, K. 1999. Biosynthesis of cysteine. In: Plant amino acids: biochemistry and biotechnology, ed. by B. K. Singh, pp. 267-271, Dekker, New York
  20. Saito, K. 2004 Sulfur assimilatory metabolism. The long and smelling road. Plant Physiol. 136:2443-2450 https://doi.org/10.1104/pp.104.046755
  21. Sanchez-Fernandez, R., Fricker, M., Corben, L. B., White, N. S., Sheard, N., Leaver, C. J., Van Montagu, M., Inze, D. and May, M. J. 1997. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proc. Natl. Acad. Sci. USA 94:2745-2750 https://doi.org/10.1073/pnas.94.6.2745
  22. Stanley, J. and Latham, J. R. 1992. A symptom variant of beet curly top geminivirus produced by mutation of open reading frame C4. Virology 190:506-509 https://doi.org/10.1016/0042-6822(92)91243-N
  23. Takahashi, H., Yamazaki, M., Sasakura, N., Watanabe, A., Leustek, T., Engler, JdA, Engler, G., Van Montagu, M. and Saito, K. 1997. Regulation of sulfur assimilation in higher plants: A sulfate transporter induced in sulfate-starved roots plays a central role in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94:11102-11107
  24. Vernoux, T., Wilson, R. C., Seeley, K. A., Reichheld, J-P., Muroy, S., Brown, S., Maughan, S. C., Cobbett, C. S., Van Montagu, M., Inze, D., May, M. J. and Sung, Z. R. 2000. The root meristemless1/cadmium sensitive2 Gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97-110 https://doi.org/10.1105/tpc.12.1.97
  25. Xiang, C., Werner, B. L., Christensen, E. L. M. and Oliver, D. J. 2001. The Biological Functions of Glutathione Revisited in Arabidopsis Transgenic Plants with Altered Glutathione Levels. Plant Physiol. 126:564-574 https://doi.org/10.1104/pp.126.2.564