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Dynamics of Track/Wheel Systems on High-Speed Vehicles
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For high speed railway vehicles, we consider a vibration of flexible track/wheel system. It is
very important to deal with the complex phenomena of high-speed vehicles that can be occurred
in the vertical vibration of the system. From a viewpoint of multibody dynamics, this kind of
problem needs accurate analysis because the system includes mutual dynamic behaviors of rigid
body and flexible body. The simulation technique for the complex problems is also discussed.
We consider the high-speed translation, rail elasticity, elastic supports under the rail and contact
rigidity. Eigen value analysis is also completed to verify the mechanism of the coupled vertical
vibration of the system.
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Nomenclature
A | Center of a wheel
B Contact point on a rail

@ : Contact point on a wheel

0-XY : Absolute coordinate

A-X4Y, . Moving frame fixed for a center of a
wheel.

B-X3Ys . Moving frame fixed for a contact po-

int.
k£ ! Rate of contact rigidity
# ! Rotation angle of the wheel
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¢ 1 Obliquity of a rail

s . Coordinate along rail

o(t) . Distance between a wheel center and a rail
d . Distance of elastic supports

ks : Rate of elastic supports

1. Introduction

This paper deals with modeling and numerical
simulation for dynamic behavior of track/wheel
systems on high-speed vehicles, considering an
elastic rail, a flexible track and rolling wheels.
Numerical method for the accurate solution is
also discussed, considering its high-speed trans-
lation. It is assumed that the motion of the system
is restricted in plane.

Considering the vibration problem of the high-
speed railway system, it is important to analyze
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the mutual dynamic behavior of the system be-
tween the wheel-motion and the track-motion
with the unilateral contact. When the vehicle runs
with high-speed, the complex phenomena in the
vertical vibration of the system occur, and so it is
also important to cope with the simulation tech-
nique considering high-speed translation. The
translation speed is not negligible compared with
the propagation speed of vibration wave. The fre-
quency of the passage through the elastic support
of the track is not so low. Then it is expected that
the interaction between the vertical vibration and
the translation influences on the system behavior.
It is required that the simulation technique for
such like problems is developed and it causes
great contribution to the design for the practical
systems.

In this paper, a rolling disk and an elastic beam
with elastic supports are modeled as the rail/
wheel system. In order to analyze the motion of
elastic rail, the Absolute Nodal Coordinate For-
mulation, Shabana (1998) is applied. The contact
position between the rolling wheel and the rail
gives the constraint condition for the unilateral
contact. Elastic supports underneath elastic rail
and the contact rigidity between the rolling wheel
and the elastic rail are also taken into account.
The dynamic load on the rail is caused due to the
interaction of these elements.

Eigen value analysis is also attempted. This sys-
tem raises the coupled motion between the con-
centrated system and the flexible system, which is
due to the elastic rail, the rolling wheel and the
flexible track. The natural frequency of the sys-
tem depends on the position of the wheel on the
elastic rail on the flexible track. Some numerical
results for the motion of the system during the
passage of the wheel on the flexible track are
discussed. It is clarified how high-speed transla-
tion influences on the system vibration.

2. Modeling and Formulation

In this paper, we consider a rolling wheel on
an elastic rail with elastic supports as rail/wheel
system. The model for the wheel rolling on the
flexible track is shown in Fig. 1. The elastic

Fig. 1 Analytical model

rail is modeled as a flexible beam that is sim-
ple supported at the both ends. We describe the
flexible beam motion by using the Absolute
Nodal Coordinate Formulation, Shabana (1998),
Takahashi and Shimizu (2001). The rolling
wheels and the flexible beam contact at a point
each other with contact rigidity that is derived
from Hertz’s theory, Terumichi (2001). We also
consider slip between the wheel and the rail. In
this chapter, modeling for a wheel that rolls on
the flexible rail is developed because it is sup-
posed that the wave propagation speed in the rail
cannot be negligible for high-speed translation.
The formulation of the system of the flexible
rail/wheel system is completed, considering the
slip, contact rigidity, support stiffness, rail elas-
ticity.

2.1 Unilateral contact between elastic rail

and wheel

The simple model for a rolling wheel on the
flexible track is shown in Fig. 2.

O-XY coordinate is the fixed frame with an
orthogonal set. A-x4v4 coordinate whose origin
is fixed on the center of the wheel and it moves
and rotates with the wheel. B-x5y5 coordinate is
fixed on the contact point and moves with its
translation. We also introduce s that is the coor-
dinate along the rail and function of time /. Due
to its dynamic behavior, the obliquity ¢ of the
rail is function of s(#) for the translation of
the wheel and also the function of time ¢ for
the vibration of the elastic rail as

p=¢(s(8), 1) (1)

B denotes the contact point between the wheel
and the rail and is on the rail. On the other hand,
@ denotes the contact point between the wheel
and the rail and is fixed on the wheel. The
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Fig. 2 Model of a wheel on the rail

position vector ros can be revealed in the fixed
frame O-XY as follows ;

ros=Roa— Coaey,,p (2)

where p is the distance between the contact point
and the wheel center.

Considering the obliquity ¢, the differentiation
of the transformation matrix Cog can be derived

as

d
dt

Cos= échCOB +%§~ % ng(:og
(3)

=¢clsCost+vs % c5Cos

The velocity vector vz can be expressed base on
this as

Vos=% ROA—% COBepr—COBeyE% Y (4)

The position vector rgg can be written in the fixed
frame O-XY as follows ;

roo=Roa+ Coar’ 4o (5)

where rig is the position vector to the con-
tact point @ from the origin of the local frame
A-X,Y, that is also the center of the wheel,
and can be written as

rmz_chCDBepr (6)

Differentiation of Equation (6) with respect to
the time can be written using Equation (3) as

Fa=Ch 4 Cosey,— CgACoxeyﬁl Y
dt dt (7)

=- CgA( ¢C§BCOB +vs %*f chCOB )ey,P "CTCosey,,p

By differentiating Equation (5), the velocity vec-
tor of the contact point @ can be derived as

Voo=Voa+Cosrag+ Coal ag (8)

From Equations (6), (7), and (8), we obtain the
following equation.

Voo=Voa— QCoaex,,p + (].SCOBepr

9
+vs g—f Cozex,0—Cosey, 0 ®)

The terms in the right hand side are translation
velocity of the center of the wheel, rotation veloc-
ity of the wheel, the vertical velocity of the con-
tact point due to the rail motion, the velocity
caused by rolling wheel on the flexible rail and
the velocity due to the contact rigidity in order.
Here,

COBexsz[cos ¢ —sin ¢][1]:[cos ﬂ (10)

sing cos¢ ||0] |sing
_|cos ¢ —sing||0|_ | —sing
COBey‘—[sinqS cos ¢ ][1]‘[ cos ¢ } (1)

Using the above relations Equation (9) can be
rewritten as

et 259,

—psin ¢
0Cos ¢ 0% osing
+[ﬂsin ¢]<¢+vs ds >+Lp cos ¢]

Using the shape function S and the nodal coor-

(12)

dinates e of the A.N.C formulation, the position
vector of rog at the contact point B on the rail
can be written as

ros=Se ( 13)

From this relation, we can lead the velocity vector
as

Vos=Sé (14)

The constraint of the unilateral contact between
the wheel and the rail must be satisfied by the
following equation

Too=Tos . (15)
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From Equation (14) and Equation (15), we ob-
tain the following relation.

Voo=Vo=35é (16)

Using Equation (12), we can rewrite Equation
(16) to the following non-holonomic constraint
equation.
—pcos ¢l |ocosd|/ o
A LA R
Vor Lpsnwﬁ] [psmqﬁ} Ve

+[ psin ¢ }—Sezo
—pcos ¢

(17)

This equation can be expressed as follows;
@VOAVOA+ @é€+ %20 (18)

where

_|100 . —o0cos ¢
@VOA—[O { IJ’ D [—psin ¢]

pcos 8 osin ¢
= (p+ve )+ ]—
! |ipsm¢} Vs —pcos ¢
By differentiating Equation (18), we can obtain
the equation as

OvoaVort Psb+ (DvosVoat Db+ .} =0 (20)

We can rewrite this constraint condition as
Vat “’C‘?Sﬂm psing } (d+v, ¢)
~psing] |-pcos ¢

—pcos |y |ocos % ¢ $
»+[_psin Aé’ e ¢}(¢+s L, M)

e

ot L
~Poos ¢

2.2 Differential algebraic equations

Several assumptions about the force transmis-
sion are set. External torque N4 acts at the center
of the wheel and external forces Fos act on the
center of the wheel. Using the radius of the wheel
without contact oo and the contact rigidity %, Foa
can be written as

- ___[cos % —sin qSH 0

sin¢ cos ¢ —F~Mg—k<9—90)] 22)

We assume that unknown constraint force and
torque Foq and N4 act on the center of the wheel.
Considering Equation (22) and these assump-
tions, we can obtain the equations of wheel mo-
tion as follows ;

MAVOAZFOA+ FOA (23)
JOAé :NOA+NOA (24)

Finally, the differential algebraic motion can be
written as

M, © @VgA VOA Foa
0 Joa @ § 1= Noa (25)
Ovon D5 ¢ A 14

The wheel motion and the rail motion are co-
upled between the contact force and the obliquity
of the rail @.

The rail motion equation is follow ;

Meé=Q;—Qui—Qu: — Qs (26)

where Qs is the external force, Qu; and Qu. are
elastic forces of the beam and Qs is elastic force
of the support.

3. Eigen Value Problems

In this chapter, we consider the static condi-
tion of the system for eigen value analysis. Mass
matrix and stiffness matrix are denoted by F.E.M
for linear problem. The system consists of the
wheel, the flexible beam and the supports with
the spring constant. The contact rigidity is also
considered and the wheel is modeled as the linear
spring-mass system. The equation of motion is
described with the following form.

Mx+Kx=0 (27

It is assumed that the mass—spring system is locat-
ed on the nodes set on the beam and the support
spring is connected on the nodes. Eigen values
and vectors for the above equation are calculated
using QZ method.

The eigen values of the system are shown in
Fig. 3. In this figure, eigen values are shown to
the 4y, mode. The lowest one corresponds to the
motion of the beam with the wheel as the rigid
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Fig. 3 Eigen values of the system

body. The second one corresponds to the motion
of the mass-spring system on the beam. Then, it
is almost constant in spite of its location on the
beam. Third and fourth ones are due to the beam
flexibility. They fluctuate with the mass position
due to the effect of the coupled motion between
the wheel and the rail. But we can also see the
change of the natural frequency of the beam
supported at its both ends.

4. Numerical Results

We verify the number of elements and the inte-
gration time step for the numerical simulation.
Next, we attempt to simulate for the motion of a
wheel on flexible rail, changing some parame-
ters such as the moving velocity and the sup-
port elasticity. Then, the dynamic behavior of the
wheel and the rail are discussed, considering the
eigen values.

4.1 Parameters in simulation

In this paper, the following parameters in
Table 1 for the wheel/rail systems are used. The
shape of the rail is approximated to rectangle.
Length of the rail is 5m and elastic support is
placed with the interval of 0.5 m and its spring
constant is 140 MN/m. The vertical load 47040 N
is given to the center of the wheel as car body
weight.

4.2 Element number and time step
The numerical results for the wheel passage on

Table 1 Parameters for numerical analysis

Material | sasc
Young’s Modulus [N/m*] | E | 2.058x 10"
Wheel Poisson Ratio v 0.30
Mass [kg] M 10
Radius [m] 0o 0.1
Material $45C
Young’s Modulus {Pa] E | 2.058x10"
Poisson Ratio v 0.30
Density [kg/m?] K 7850
Rail Length [m] / 1.0
Sectional Height [m] I 0.02
Sectional Width [m] bt 0.01
Sectional Area [m?] al 6936x107°
Mass Moment of Inertia [m*] | I {3.08961x 1075
Elastic Support [MN/m] | ks 140
Others |  Interval of Supports [m] | ds 0.5
External Force on Wheel [N] |Fy,j 47040

the flexible beam with the integration time step
10755, 107"s and 107%s are shown in Fig. 4. The
moving velocity, 50 km/h, the support elasticity
140 MN/m and the number of elements 20 are
given. In this result, according to the judgment of
slip, it is mentioned that the wheel moves without
slip and so the translation velocity coincides with
the rotation velocity. Then calculation error ve
can be defined as

2=p8 00 (28)

Ve=
From these results, the calculation error and the
displacement of the contact point with the inte-
gration time step 107%s, 107’s and 107%s are in
good agreement quantitatively. Integration time
step 107%s is also sufficient to estimate the dis-
placement of the contact point. However, we
need 10775 to discuss about its acceleration. In
addition, we also cannot calculate with accuracy
at the integration time step 107%s for the motion
with the high moving velocity 300km/h. It is
supposed that we have to pay attention to the
integration time step, when the translation veloci-
ty is not so smaller than the propagation velocity
of the wave in the beam.
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We also investigate the reasonable number of
the elements, comparing the results with 20, 40
and 80 elements. Translation velocity 200 km/h,
the support elasticity 140 MN/m and the integra-
tion time step 107"s are given. Fig. 5 shows the
numerical results for each number of elements.
The calculation error and the displacement of the
contact point for the number of elements 20, 40
and 80 are in good agreement quantitatively.
When we consider the displacement of the contact
point, optimized element number is about 20.
However, we need the element number 40 for the
discussion of the acceleration.

From the above discussion, we adopt the inte-
gration time step 107’s and the number of
elements 20 or 40.

4.3 Effect of supports stiffness on displace
ment at contact point
In this subsection, the interval length of the
elastic supports, number of element, time unit are
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given as 0.5m, 20 and 10™"s respectively. We
focus on the effect of the support elasticity on the
dynamic behavior of the system.

Fig. 6 shows the maximum amplitude of the
vibration at the contact point with high frequency
for moving velocity 100 km/h and 300 km/h. It is
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mentioned that the maximum amplitude of the
displacement at the contact point shifts up on the
whole with the increase of the support elasticity.
The amplitude for both velocity decreases with
the increase of the support elasticity. It is also
noticed that the effect of the high moving velocity
on the amplitude of the displacement at the con-
tact point becomes remarkable relatively around
70-140 MN/m.

4.4 Effect of moving velocity

In this section, the influence of the moving
velocity on the frequency of the system during the
passage and the amplitude of the displacement at
the contact point are discussed. Some moving
velocities from 50 km/h to 400 km/h are given.
Support elasticity 140 MN/m is also given. These
investigations are summarized in Fig. 7.

The main frequency occurred during the pas-
sage does not depend on the moving velocity. On
the other hand, the amplitude of the displacement
at the contact point increases with the increase of
the moving velocity. It is supposed that the exter-
nal force with the frequency due to the passage on
the elastic supports exerts on the system vibration.

In this case, it is shown that the main frequency
of the displacement at the contact point is about
400 Hz and it corresponds to the third mode of
the system vibration, using the eigen values shown
in Fig. 3. Therefore, we can understand that the
main frequency of the system vibration is almost
constant for the moving velocity because the
coupling effect with the contact rigidity is still
strong in this mode.
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Fig. 7 Maximum amplitude and main frequency

4.5 Effective factors on acceleration at

contact point

The effective factors to the acceleration at the
contact point are clarified in this subsection.
From a viewpoint of the muitibody dynamics,
the constraint condition for the unilateral contact
gives the valuable information in the numerical
approach. It is described with some terms includ-
ing the components of the acceleration at the
contact point.

In this section, we aim to point out the gover-
ning factors for the vertical vibration of the sys-
tem at the contact point Because of the constant
moving velocity, we can neglect the influence of
the first two terms of the left hand side in Equa-
tion (21). In addition, as ¢ is small enough in
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-~ [N e TR 1 Y et
§ s CHE
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Fig. 8 Influence of each term for acceleration
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these cases, we can neglect the terms without the
sixth and the seventh terms.

Fig. 8 shows the acceleration fluctuation of
these terms, comparing (a) translation speed 100
km/h and (b) 300 km/h. In the results with the
high speed, we can verify that the effect of the in-
teraction among the translation and the rotation
of the wheel, and the vertical vibration of the rail
become remarkable. The effect is proportion to
the square of the magnitude of moving velocity.
These results point out that we can not neglect
the effect of the incline of the rail due to its flexi-
bility on the vertical acceleration at the contact
point.

5. Conclusion

In this paper, we propose modeling and nu-
merical simulation for the dynamic behavior of
the rail/wheel system, considering high transla-
tion speed, rail elasticity, elastic supports under
the rail, contact rigidity and so on. Modeling and
formulation for an accurate simulation is dis-
cussed for the complex phenomena caused by the
interaction between the rail and the wheel. We
also discuss about the numerical approach with
the finite elements. Such as the number of ele-
ments and the time step are optimized in numeri-
cal approach. Finally we attempt to verify the
mechanism of the coupled vibration between the
rail and the wheel, using the eigen value analysis
and the constraint conditions for the unilateral
contact.

It is shown that the amplitude of the lateral
vibration of the rail increases with the increase of

moving velocity. On the other hand, the frequency
of it does not depend on the translation velocity.
We can understand this property from the results
of the eigen value analysis. The natural frequency
of the actual vibration mode, third one, is almost
constant during the passage of the wheel. These
are due to the coupling between the elastic sup-
ports and the rail flexibility.

Using the unilateral contact condition, it is also
clarified that the acceleration of the contact point
is mainly caused by the coupling terms among the
translation and the rotation of the wheel, and the
vertical vibration of the flexible rail.
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