DOI QR코드

DOI QR Code

Electrochemical Performance of LSCF Cathode with GDC lnterlayer on ScSZ Electrolyte

  • Hwang, Hae-Jin (School of Materials Science and Engineering, Inha University) ;
  • Moon, Ji-Woong (Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Lim, Yongho (School of Materials Science and Engineering, Inha University, Korea Institute of Ceramic Engineering and Technology(KICET)) ;
  • Lee, Seunghun (School of Materials Science and Engineering, Inha University) ;
  • Lee, Eun-A (School of Materials Science and Engineering, Inha University)
  • Published : 2005.12.01

Abstract

A symmetrical LSCF $(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta})\;ScSZ(89ZrO_2-10Sc_2O_3-1CeO_2)/LSCF$ electrochemical cell with a GDC (Gadolinium-Doped Ceria, $90CeO_2-10Gd_2O_3$) interlayer that was inserted between the LSCF cathode and ScSZ electrolyte was fabricated, and the electrochemical performance of these cells was evaluated. The GDC interlayer was deposited on a ScSZ electrolyte using a screen-printing technique. The GDC interlayer prevented the unfavorable solid-state reactions at the LSCF/ScSZ interfaces. The LSCF cathode on the GDC interlayer had excellent electrocatalytic performance even at $650^{\circ}C$. The Area Specific Resistance (ASR) was strongly dependent on the thickness and heat-treatment temperature of the GDC interlayer. The impedance spectra showed that the cell with a $15\~27{\mu}m$ thick GDC interlayer heat-treated at $1200^{\circ}C$ had the lowest ASR.

Keywords

References

  1. K. Eguchi, H. Kojo, T. Takeguchi, R. Kikuchi, and K. Sasaki, 'Fuel Flexibility in Power Generation by Solid Oxide Fuel Cells,' Solid State Ionics, 152-153 411-16 (2002) https://doi.org/10.1016/S0167-2738(02)00351-X
  2. C. Lu, W. L. Worrell, R. J. Gorte, and J. M. Vohs, 'SOFCs for Direct Oxidation of Hydrocarbon Fuels with Samaria-Doped Ceria Electrolyte,' J. Electrochem, Soc., 150 [3] A354-58 (2003) https://doi.org/10.1149/1.1553765
  3. W. Winkler and J. Koeppen, 'Design and Operation of Interconnectors for Solid Oxide Fuel Cell Stacks,' J. Power Sources, 61 [1-2] 201-04 (1996) https://doi.org/10.1016/S0378-7753(96)02353-1
  4. T. Kadowaki, T. Shiomitsu, E. Matsuda, H. Nakagawa, H. Tsuneizumi, and T. Maruyama, 'Applicability of Heat Resisting Alloys to the Separator of Planar Type Solid Oxide Fuel Cell,' Solid State Ionics, 67 65-9 (1993) https://doi.org/10.1016/0167-2738(93)90310-Y
  5. T. Brylewski, M. Nanko, T. Maruyama, and K. Przybylski, 'Application of Fe-16Cr Ferritic Alloy to Interconnector for a Solid Oxide Fuel Cell,' Solid State Ionics, 143 131-50 (2001) https://doi.org/10.1016/S0167-2738(01)00863-3
  6. E. Maguire, B. Gharbage, F. M. B. Marques, and J. A. Labrincha, 'Cathode Materials for Intermediate Temperature SOFCs,' Solid State Ionics, 127 329-35 (2000) https://doi.org/10.1016/S0167-2738(99)00286-6
  7. V. Dusastre and J. A. Kilner, 'Optimisation of Composite Cathodes for Intermediate Temperature SOFC Applications,' Solid State Ionics, 126 163-74 (1999) https://doi.org/10.1016/S0167-2738(99)00108-3
  8. J. M. Ralph, J. T. Vaughey, and M. Krumpelt, 'Evaluation of Potential Cathode Materials for SOFC Operation between $500-800^{\circ}C$; pp. 466 in Proceedings of the 7th International Symposium on Solid Oxides Fuel Cells VII, Vol. 2001-16. Ed. by H. Yokokawa, and S. C. Singhal, New Jersey, 2001
  9. H. J. Hwang, C. M. Whang, J. W. Moon, and M. Awano, 'Fabrication of Multi-Layered Electrochemical Cells with $Sc_2O_3$-Stabilized$ZrO_2$, Electrolyte, $CeO_2$ Thin Film and LSCF Catalytic Electrodes for NO Removal,' J. Ceram. Soc. Jpn., 112 [5] S1046-51 (2004)
  10. N. Sasaki, T. Hashimoto, T. Katsube, K. Yamaji, H. Negishi, T. Horita, H. Yokogawa, Y. P. Xiong, M. Nakagawa, and Y. Takahashi, 'Miscibility Gap in $CeO_2-ZrO_2-YO_{1.5}$ System as an Electrode of Solid Oxide Fuel Cell,' Solid State Ionics, 143 151-60 (2001) https://doi.org/10.1016/S0167-2738(01)00855-4
  11. M. Mitsuyasu, Y. Nonaka, and K. Eguchi, 'Analysis of Solid State Reaction at the Interface of Yttria-Doped Ceria/ Yttria-Stabilized Zirconia,' Solid State Ionics, 113-115 279-85 (1998) https://doi.org/10.1016/S0167-2738(98)00293-8
  12. T. L. Nguyen, K. Kobayashi, T. Honda, Y. Iimura, K. Kato, A. Neghisi, K. Nozaki, F. Tappero, K. Sasaki, H. Shirahama, K. Ota, M. Dokiya, and T. Kato, 'Preparation and Evaluation of Doped Ceria Interlayer on Supported Stabilized Zirconia Electrolyte SOFCs by Wet Ceramic Processes,' Solid State Ionics, 174 163-74 (2004) https://doi.org/10.1016/j.ssi.2004.06.017
  13. J. A. Lane, P. H. Middleton, H. Fox, B. C. H. Steele, and J. A. Kilner, 'Study of Selected Perovskite Cathode Materials on Doped Ceria Electrolyte by AC Impedance Spectroscopy'; pp. 489-504 in Proceedings of the 2nd International Symposium on Ionic and Mixed Conducting Ceramics, Proc. Vol. 94-12. Ed. by T. A. Ramanarayaman, W. L. Worrel, H. L, Tuller, Electrochemical Society, New Jersey, 1994