DOI QR코드

DOI QR Code

Characterization of a LSCF/GDC Cathode Composite in Solid Oxide Fuel Cells Using Impedance Spectroscopy

  • Hwang, Jin-Ha (Department of Materials Science and Engineering, Hongik University) ;
  • Lee, Byung-Kook (Department of Materials Science and Engineering, Hongik University)
  • Published : 2005.12.01

Abstract

A composite cathode of LSCF$(La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3)\;and\;GDC\; (Gd_2O_3-doped\;CeO_2:Ce_{0.9}Gd_{0.1}O_{1.95_})$ was characterized in terms of an electrode response, using a point contact in an Yttria-Stabilized Zirconia (YSZ) electrolyte incorporated into AC two-point impedance spectroscopy. The point-contacted configuration amplifies the responses occurring near the YSZ/cathode interface through the aligned point contact on the planar LSCF/GDC electrode. The point contact interface increases the bulk resistance allowing the estimation of the point contact geometry and resolving the electrode-related responses. The resultant impedance spectra are analyzed through an equivalent circuit model constructed by resistors and constant phase elements. The bulk responses can be resolved from the electrode-related portions in terms of spreading resistance. The electrode-related polarizations are measured in terms of temperature and oxygen partial pressure. The modified impedance spectroscopy is discussed in terms of methodology and analytical aspects, toward resolving the electrode-polarization issues in solid oxide fuel cells.

Keywords

References

  1. B. C. H. Steele and A. Heinzel, 'Materials for Fuel-Cell Technologies,' Nature, 414 345-52 (2001) https://doi.org/10.1038/35104620
  2. J. M. Ralph, A. C. Schoeler, and M. Krumpelt, 'Materaisls for Lower Temperature Solid Oxide Fuel Cells,' J. Mater. Sci., 36 1161-72 (2001) https://doi.org/10.1023/A:1004881825710
  3. N. Q. Minh, 'Ceramics Fuel Cell,' J. Am. Ceram. Soc., 76 [3] 563-88 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb03645.x
  4. B. C. H. Steele, 'Materials for IT-SOFC Stacks 35 Years R&D: The Inevitability of Gradualness,' Solid State Ionics, 134 3-20 (2000) https://doi.org/10.1016/S0167-2738(00)00709-8
  5. S. Tao and J. T. S. Irvine, 'Discovery and Characterization of Novel Oxide Anodes for Solid Oxide Fuel Cells,' The Chemical Record, 4 83-95 (2004) https://doi.org/10.1002/tcr.20003
  6. B. J. Christensen, R. T. Coverdale, R. A. Olson, S. J. Ford, E. J. Garboczi, H. M. Jennings, and T. O. Mason, 'Impedance Spectroscopy of Hydrating Cement-Based Materials: Measurement, Interpretation, and Applications,' J. Am. Ceram. Soc., 77 2789-804 (1994) https://doi.org/10.1111/j.1151-2916.1994.tb04507.x
  7. I. M. Hodge, M. D. Ingram, and A. R. West, 'Impedance and Modulus Spectroscopy of Polycrystalline Electrolytes,' J. Electroanal. Chem., 74 125-43 (1976) https://doi.org/10.1016/S0022-0728(76)80229-X
  8. J. T. S. Irvine, D. C. Sinclair, and A. R. West, 'Electroceramics: Characterization by Impedance Spectroscopy,' Adv. Mater., 2 [3] 132-38 (1990) https://doi.org/10.1002/adma.19900020304
  9. J. T. S. Irvine, A Huanosta, R. Valenzuela, and A. R. West, 'Electrical Properties of Polycrystalline Nickel Zinc Ferrites,' J. Am. Ceram. Soc., 73 [3] 729-32 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb06580.x
  10. M. Itagaki, N. Kobari, S. Yotsuda, K. Watanabe, S. Kinohita, and M. De, '$LiCoO_2$ Electrode/Electrolyte Interface of Li-Ion Rechargeable Batteries Investigated by In Situ Electrochemical Impedance Spectroscopy,' J. Power Sources, 148 78-84 (2005) https://doi.org/10.1016/j.jpowsour.2005.02.007
  11. M. Matsumura and Y. Hirose, 'Impedance Spectroscopic Analysis of Forward Biased Metal Oxide Semiconductor Tunnel Diodes,' Appl. Surf. Sci., 175-6 740-45 (2001)
  12. R. Ono, M. Kiy, I. Biaggio, and P. Gunter, 'Impurity-Gas-Dependent Chrage Injection Properties at the Electrode-Organic Interface in Organic Light-Emitting Diodes,' Mat. Sci. and Eng., B85 144-48 (2001)
  13. B.-K. Lee, Y-H. Yu, B.-S. So, S.-M. Kim, J. Kim, H.-W. Lee, J.-H. Lee, and J.-H. Hwang, 'Electrical Characterization of the Platinum/YSZ Interface in SOFCs via Micro-contat Impedance Spectroscopy,' Submitted to J. of Electroceramics (2005)
  14. R. Holm, Electric Contacts : Theory and Application, Springer-Verlag, New York (1967)
  15. J. Newman, 'Resistance for Flow of Current to a Disk,' J. Electrochem. Soc., 113 501-02 (1966) https://doi.org/10.1149/1.2424003
  16. J. Fleig and J. Maier, 'Finite Element Calculations of Impedance Effects at Point Contacts,' Electrochimca Acta, 41 1003-09 (1996) https://doi.org/10.1016/0013-4686(95)00431-9
  17. J.-H. Hwang, K. S. Kirkpatrick, T. O. Mason, and E. J. Garboczi, 'Experimental Limitations in Impedance Spectroscopy : Part IV. Electrode Contact Effects,' Solid State Ionics, 98 93-104 (1997) https://doi.org/10.1016/S0167-2738(97)00075-1
  18. J.-C. Yun, J.-H. Lee, J. Kim, H.-W. Lee, and B.-H. Kim, 'Effect of Cathode Porosity on the Cathodic Polarization Behavior of Mixed Conducting $La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_3$( in Korean),' J. Kor. Ceram. Soc., 42 [4] 251-59 (2005) https://doi.org/10.4191/KCERS.2005.42.4.251
  19. H. Zhao, L. Huo, and S. Gao, 'Electrochemical Properties of LSM-CBO Composite Materials,' J. Power Sources, 125 149-54 (2004) https://doi.org/10.1016/j.jpowsour.2003.07.009
  20. G. Hsieh, S. J. Ford, T. O. Mason, and L. R. Pederson, 'Experimental Limitations in Impedance Spectroscopy : Part-1 Simulation of Reference Electrode Artifacts in Three Point Measurements,' Solid State Ionics, 91 191-201 (1996) https://doi.org/10.1016/S0167-2738(96)00481-X
  21. G. Hsieh, T. O. Mason, and L. R. Pederson, 'Experimental Limitations in Impedance Spectroscopy: Part-2 Electrode Artifacts in Three-Point Measurements on Pt/YSZ,' Solid State Ionics, 91 203-12 (1996) https://doi.org/10.1016/S0167-2738(96)00403-1
  22. G. Hsieh, T. O. Mason, E. J. Garboczi, and L. R. Pederson, 'Experimental Limitations in Impedance Spectroscopy: Part-3 Effect of Reference Electrode Geometry/Position,' Solid State Ionics, 96 153-72 (1997) https://doi.org/10.1016/S0167-2738(97)00073-8