DOI QR코드

DOI QR Code

Development of Metal Substrate with Multi-Stage Nano-Hole Array for Low Temperature Solid Oxide Fuel Cell

저온 고체산화물연료전지 구현을 위한 다층 나노기공성 금속기판의 제조

  • Kang, Sangkyun (Rapid Prototype Lab, Department of Mechanical Engineering, Stanford University) ;
  • Park, Yong-Il (School of Materials and System Engineering, Kumoh National Institute of Technology)
  • Published : 2005.12.01

Abstract

Submicron thick solid electrolyte membrane is essential to the implementation of low temperature solid oxide fuel cell, and, therefore, development of new electrode structures is necessary for the submicron thick solid electrolyte deposition while providing functions as current collector and fuel transport channel. In this research, a nickel membrane with multi-stage nano hole array has been produced via modified two step replication process. The obtained membrane has practical size of 12mm diameter and $50{\mu}m$ thickness. The multi-stage nature provides 20nm pores on one side and 200nm on the other side. The 20nm side provides catalyst layer and $30\~40\%$ planar porosity was measured. The successful deposition of submicron thick yttria stabilized zirconia membrane on the substrate shows the possibility of achieving a low temperature solid oxide fuel cell.

Keywords

References

  1. J. Will, A. Mitterdorfer, C. Kleinlogel, D. Perednis, and L. J. Gaukler, 'Fabrication of Thin Electrolytes for Second-Generation Solid Oxide Fuel Cells,' Solid State Ionics, 131 79-96 (2000) https://doi.org/10.1016/S0167-2738(00)00624-X
  2. Y. Jiang and A. V. Virkar, 'A High Performance, AnodeSupported Solid Oxide Fuel Cell Operating on Direct Methanol,' J. Electrochem. Soc., 148 [7] A706-09 (2001) https://doi.org/10.1149/1.1375166
  3. B. Zhu, 'Advantages of Intermediate Temperature Solid Oxide Fuel Cells for Tractionary Applications,' J. Power Sources, 93 82-6 (2001) https://doi.org/10.1016/S0378-7753(00)00564-4
  4. R. Doshi, V. L. Richards, J. D. Carter, X. Wang, and M. Krumpelt, 'Development of Solid-Oxide Fuel Cells That Operate at $500^{\circ}C$,' J. Electrochem. Soc., 146 [4] 1273-78 (1999) https://doi.org/10.1149/1.1391758
  5. B. C. H. Steele, 'Materials for IT-SOFC Stacks, 35 Years R&D: The Inevitability of Gradualness?,' Solid State Ionics, 134 3-20 (2000) https://doi.org/10.1016/S0167-2738(00)00709-8
  6. J. Schoonman, J. P. Dekker, J. W. Briers, and N. J. Kiwiet, 'Electrochemical Vapor Deposition of Stabilized Zirconia and Interconnection Materials for Solid Oxide Fuel Cells,' Solid State Ionics, 46 [3-4] 299-308 (1991) https://doi.org/10.1016/0167-2738(91)90229-5
  7. L. S. Wang and S. A. Barnett, 'Sputter-Deposited Mediumtemperature Solid Oxide Fuel Cells with Multi-Layer Electrolyte,' Solid State Ionics, 61 273-76 (1993) https://doi.org/10.1016/0167-2738(93)90391-F
  8. A. F. Jankowski and J. P. Hayes, 'Reactive Sputter Deposition of Yttria-Stabilized Zirconia,' Surf. Coat. Tech., 7677 126-31 (1995)
  9. C. Xia, S. Zha, W. Yang, R. Peng, D. Peng, and G. Meng, 'Preparation of Yttria Stabilized Zirconia Membranes on Porous Substrates by a Dip-Coating Process,' Solid State Ionics, 133 287-94 (2000) https://doi.org/10.1016/S0167-2738(00)00743-8
  10. X. Changrong, C. Huaqiang, W. Hong, Y. Pinghua, M. Guangyao, and P. Dingkun, 'Sol-Gel Synthesis of Yttria Stabilized Zirconia Membranes Through Controlled Hydrolysis of Zirconium Alkoxide,' J. Membrane Sci., 162 181-88 (1999) https://doi.org/10.1016/S0376-7388(99)00137-4
  11. G. Koren, E. Polturak, B. Fisher, D. Cohen, and G. Kimel, 'Highly Oriented As-Deposited Superconducting Laser Ablated Thin Films of $Y_1Ba_2Cu_3O_{7-\delta}$ on $SrTiO_3$, Zirconia, and Si Substrates,' Appl. Phys. Lett., 53 2330-32 (1998) https://doi.org/10.1063/1.100515
  12. N. Wakiya, T. Yamada, K. Shinozaki, and N. Mizutani, 'Heteroepitaxial Growth of $CeO_2$ Thin Film on Si(001) with an Ultra Thin YSZ Buffer Layer,' Thin Solid Films, 371 211-17 (2000) https://doi.org/10.1016/S0040-6090(00)01008-7
  13. S. Horita, H. Nakajima, and T. Kuniya, 'Improvement of the Electrical Properties of Heteroepitaxial Yttria-Stabilized Zirconia (YSZ) Films on Si Prepared by Reactive Sputtering,' Vacuum, 59 390-96 (2000) https://doi.org/10.1016/S0042-207X(00)00292-X
  14. M. Hartmanova, K. Gmukova, M. Jergel, I. Thurzo, F. Kundracik, and M. Brunei, 'Structural and Electrical Properties of Double-Layer Ceria/Yttria Stabilized Zirconia Deposited on Silicon Substrate,' Solid State Ionics, 119 85-90 (1999) https://doi.org/10.1016/S0167-2738(98)00487-1
  15. J. Van Herle, R. Ihringer, N. M. Sammes, G. Tompsett, K. Kendall, K. Yamada, C. Wen, T. Kawada, M. Ihara, and J. Mizusaki, 'Concept and Technology of SOFC for Electric Vehicles,' Solid State Ionics, 132 333-42 (2000) https://doi.org/10.1016/S0167-2738(00)00649-4
  16. T. W. Kueper, S. J. Visco, and L. C. D. Jonghe, 'Thin-Film Ceramic Electrolytes Deposited on Porous and Non-Porous Substrates by Sol-Gel Techniques,' Solid State Ionics, 52 251-59 (1992) https://doi.org/10.1016/0167-2738(92)90113-4
  17. K. Masuda and P. Fukuda, 'Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structure of Anodic Alumina,' Science, 268 1466-68 (1995) https://doi.org/10.1126/science.268.5216.1466
  18. K. Jiang, Y. Wang, J. Dong, L. Gui, and Y. Tang, 'Electrodeposited Metal Sulfide Semiconductors Films with Ordered Nanohole Array Structures,' Langmuir, 17 3635-38 (2001) https://doi.org/10.1021/la0010976
  19. Y. Lei, C. Liang, Y. Wu, and L. Zhang, 'Preparation of Highly Ordered Nanoporous Co Membranes Assembled by Small Quantum-Sized Co Particles,' J. Vac. Sci. Tech. B, 19 [4] 1109-14 (2001) https://doi.org/10.1116/1.1378011