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Abstract

This paper presents a new intelligent digital redesign (IDR) method via the compensated bilinear transformation to
design the digital controller such that the digital fuzzy system is equivalent to the analog fuzzy system in the sense
of the state-matching. This paper especially consider a multirate control scheme with a predictive feature, where the

digital control input is held constant N times between the sampling points. More precisely, the multirate control

scheme is proposed that utilizes a numerical integration scheme to approximately predict the current state from the
state measured at the sampling points, the delayed measurements. For this system, the IDR conditions incorporated
with stabilizability in the format of the linear matrix inequalities (LMIs) are derived. The superiority of the proposed
technique is convincingly visualized through a numerical example.

Key words : Intelligent digital redesign (IDR), fuzzy control, digital control, fuzzy system, linear matrix inequalities

(LMIs).

.M E

Intelligent Digital redesign (IDR) has gained tremen-
dously increasing attention as yet another efficient de-
sign tool of the digital fuzzy control [1]-[6]. The IDR
problem is the problem of designing a digital controller
such that the digital fuzzy system is equivalent to the
analog fuzzy system in the sense of the state matching.

There have been fruitful researches in the digital con-
trol system focusing on IDR method. Historically, Joo et
al. first attempted to develop some intelligent digital re-
design methodology for complex nonlinear systems [1].
They synergistically merged both the Takagi - Sugeno
(T -S) fuzzy-model-based control and the digital rede—
sign technique for a class of nonlinear systems. Chang et
al. extended the intelligent digital redesign to uncertain
T - S fuzzy systems [2]. These approach [1], [2] to IDR
are so called as local approach. The local approach can
allows to match the states of the continuous-time and
the sampled-data closed—loop fuzzy systems in the ana-
lytic way, but it may lead to undesirable and/or in-
accurate results. The major reason is that the redesigned
digital control gain matrices are obtained by considering
only the local state-matching of each sub-closed-loop
system [6]. To overcome this weakness, Lee et al. a
global state-matching technique

based on the convex optimization method, the linear
matrix inequalities (LMIs) method, proposed in [6].
Specifically, their method is to globally match the states
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of the overall closed-loop T - S fuzzy system with the
predesigned analog fuzzy-model-based controller and
those with the digitally redesigned fuzzy-model-based
controller, and further to examine the stabilizability by
the redesigned controller in the sense of Lyapunov.
However. the IDR problem becomes the overdamped
problem according as transferring the local approach to
the global one in IDR problem. It may lead to un-
desirable and/or inaccurate results.

Motivated by the above observations, we proposea
new intelligent digital redesign (IDR) method via the
compensated bilinear transformation to design the digital
fuzzy controller such that the digital fuzzy control sys-
tem is equivalent to the analog fuzzy control system in
the sense of the state-matching. We especially consider
a multirate control scheme with a predictive feature,

where the digital control input is held constant NV times
between the sampling points (see, e.g.,[10-18]). More
precisely, we propose the multirate control scheme that
utilizes a numerical integration scheme to approximately
predict the current state from the state measured at the
sampling points, the delayed measurements. For this
system, we derive the IDR conditions incorporated with
stabilizability in the format of the linear matrix inequal-
ities (LMlIs). The superiority of the proposed technique is
convincingly visualized through a numerical example.

2. Preliminaries and Problem Statements

In this section, we consider the problem of matching
the responses of an existing analog fuzzy control system
with those of the digital fuzzy control system for the
same initial conditions.
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Consider the system described by the following
Takagi-Sugeno fuzzy model [7-9]:

1(0)= 3. 6, AX(®) + Bu(r) M

where x(f)e R" and u,(t)e R" ¥ is the number of
model rules, z(1)=[z(*)---z,(OF is the premise variable
vector that is a function of states, and 6;(z(t)) is the
normalized weight for each rule, that is 6,(2(¢))=0 and
3..6Em)=1,

For the fuzzy system (1), an existing analog fuzzy
controller takes the following form:

5,(0)= Y. 0,5, () @

where the subscript ‘@ ’means the analog control. By
substituting (2) into (1), we obtain

w0=3 3 6,008, CONA+BE )%, @O 3

i=l j=l

It follows from (3) that

5,0)= 3 Y 6,18, (2t )e K x (1) “
=l j=t

+0,(x, (1), x,(2))
where

el (xa (Au')? xa (to ))
= [ 35008, (0XA + 8K, ) ()

= A

! (+B K, Xt
[ X 0.zt )6, @t ))A + BK X x, 1, )du
L]

We consider a multirate digital fuzzy controller where
the digital control input %,(f) is held constant N times
between the sampling points. Let 7 and 7 be the sam-
pling time and the control update time, respectively. The
relation between 7 and T can be defined as 7=T/N.
Then, the digital fuzzy controller is implemented by

4, (0)= ¥ 8,(z(kT + KT) Fyx, (KT + k) )

for the time interval [T +KT,kT+KT+T), kXKe

ZyX 2 woy, where the subscript ‘d’denotes the digital

control.

Remark 1. Within a sampling time T, the single-rate
controller is static, while the multirate controller is pe-
riodically time-varying, ie., the control action is up-
dated at a small period T. Clearly, for the single-rate
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case, this control update period T is equal to the sam-
pling period T. Specifically, setting N =1 in (5) leads
to the following single-rate fuzzy controller:

u0)= Y. 6,(z(KT)Ex, (KT) ©®)

By interfacing an ideal sampler and a zero-order hold-
er between (1) and (5), the closed-loop system is repre—
sented as

(0= 3 0.GOW,GHT rrT)

X(A;x;(8)+ B, F x, (kT +x7))
for the time interval [kKT +KT, kT +KT+7), kXK€ Z;
XZ
It follows from (7) that

[0,N-1] -

x, (kKT +x7+7) = Z je,. (KT +x0)B,(2kT + 7))

=1 =l
(@, +TF Y, (KT + k1)
+©,(x,(12), %, (AT + &)

8

where @, =¢* T, =(®,-1)4"'B,, and

®,(x, 7)) X3 (KT + 1))

KT +xcr e o

=S Y B8, (T + x9)

x(Ax, () +BF x, (kT +x7))d p

kT +x7 45

- i i G (z(kT +x2))0,(z(KT +x71))

124
+xT s

x| AT o AT B |3, (T + r)d g1

Now letting % =kT+x7T and t=kT+xT+7 in (4), we
have

x, (T +xk7+7) = > G,(2(kT +Kk7))8,(2(kT +K7T)

==

xB,x (kT +x7) &)

ii*a
+0,(x,(4), %,(kT + K7))
(4+BK;)t

where E,(t—¢,)=¢

From (8) and (9), the IDR problem is to find the digi-

tal gains F, under the assumption that x.(AT-+kT)=

x, (kT +xT) such that
Eij =, +riFj )
and

©,(x, (2),%, (kT + x7)) = O, (%, (), x, (KT + x7)) 1)
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are satisfied. However, it may be impossible to solve
to (11) because the condition (11) is highly complex
nonlinear matrix equality. The following assumption is
introduced for ease of control synthesis.

Assumption 1. Assume that ©,(x, (1) x,(kT +x7))=0
and ©,(x, (1), x, ()T +x7})=0 for sufficiently small sam-
pling period. Then the equations (8) and (9) can be sim-
plified as

(T +x0+7)= 3 S 0,((T +KT))8, (2(kT +KT))

=l j=i

(12)
X (®, +T,F)x, (kT +K7)

and

3, (kT +xt+7)= 3 3 6,(2(KT + <0)8, (2(T+ 7)) )

xE, x, (kT +KT)

ija

respectively.

Remark 2. It is found in [1,2345] that the dis-
crete-time models of (3) and (7) have been described by
(13) and (12), respectively.

Then, in principle, the digital gain F, can be de-

termined from (10).

Remark 3. It is noted that the previous results
[1,2345] have been interested in the single-rate con-
trol problem, which refers only to special case, N =1in
the multirate control problem. Meanmwhiile, in several re—
sults in the linear control system, it is shown that the
multirate control scheme is more realistic approach,
which allows us to consider the intersampling points be—
tween sampling points.

3. New IDR method via the compensated
Bilinear Transformation

To relax the ESM condition (10), we first obtain a
new discretized version of the analog control system (13)
by applying the bilinear transform, and then matches the
resulting analog system and the digital system in the
discrete-time domain.

Proposition 1. IDR based on the block-puise method
The responses of the digital fuzzy system (8) and the

analog one (9) will closely match at t=kT+kT+7T for
an arbitrary initial state x, (kT +x7)=x,(kT +xT) if
there exist the redesigned digital feedback gains F; such
that

1,1 " _ .
SU=SKTY'K(@+D)=F, G j)elx], 14)

Then, the overall digital control system is redesigned

as
£0=3, F6,G08,*T)
x[‘l)ixd 0)+T, %(1 —%Kjl"i)"K (@, +D)x, (kT):i. (15)

Remark 4. Note that Proposition 1 is more relaxed
condition than (10) in the general case, M<IN,

Equation (10) consists of (rn)* scalar equations with
Fmn unknown elements in F,i€ I, while (14) is com-
posed of ¥*mn scalar equations with YMR unknown el-

ements in F,,i€ I,. However, we still do not obtain a
solution to (14) in an analytic way , except in the case of
common H, ie, I''=1,=--=T,. Also, the error in-
volved in the bilinear transform causes a performance
decline of the state-matching, especially in the slow
sampling frequency.

To avoid the difficulties on the Remark 4, we pro-
posed a new compensated block-pulse function method,
and then we reformulate the IDR problem as the mini-
mization problem (MP). The following theorem is the
main results of this paper

¢
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23 ¥ 56 08 1 12z 14 16 1if 2
Tioe (years)
Fig. 1. Comparison of time responses X ; of the

controlled fuzzy system: analog (solid), proposed with
N=5 (dashed) , proposed with N=2 (dash-dot), proposed
with N=1 (dotted).

Theorem 1. System (1) is stabilizable by the digital
feedback gains F, and the norm conditions of realizing
the conditions (14) of the corresponding closed-loop
system is smaller than a given ¥ if there exist a matrix
0=Q" >0, and matrices x,=x7=x,=x%, E;, S, such
that the following two MPs:

MP1: Minimizer,r, Y, subjectto

- &
5, -0 -T0X1-05K Ty K @+E) 1/
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1l (o) <0
T0501-05KT)' K(®,+E)-TF, —I|

MP2: Minimizegs,x, 7, Subjectto

-ne @],
| S

[ _ T
I }< 0,
|1 x(0) -0
( —0+X,;
G,@+TS,+G,0+TS,
2
[x,] <0 G.pel,xI,

(o)
<0

are Q=P_I’ Si=FBiQ,

where

feasible,
F=F,+F,;.

and

025

0.15}F

29(t)

005}

0

0 02 04 06 08 1 12 14 16 18 2
Time (years)

Fig. 2. Comparison of time responses X 5 of the

controlled fuzzy system: analog (solid), proposed with
N=5 (dashed) , proposed with N=2 (dash-dot), proposed
with N=1 (dotted).

4. Computer Simulations

We present in this section a numerical application in
order to show the applicability and the effectiveness of
our approach.

Consider the following numerical model.

R, : TF x4(t) is about ['yy, THEN &(t) = Ax(t) + Byu(t)
Ry @ IF z3(t) is about 'y, THEN @(t) = Asx(t) + Bau(t)

where

g0
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[ —~Q) — 2 P%min 0 —(l.gbl 0 1
0 —y + A C3min (l4b2 0
_ a5T3min —sT3min Qs —aghy | 1
—Q] ~ 09L3mar 0 —ayb, 0
4} -3 + Q4T 3max by 0
| A5 T3mas ~Q§Tgmar  asby —aghy | 1 |’

ay = 025‘ (y = 50, ag = 0.25, ay = 10.0, ag = 001,
ag = 0.006, by = 1000, and b, =550, Here, we can
reasonably, determine [ % 3, X 3max ] @s [~0.006,0.0061.

We design a stabilizing analog fuzzy controller as fol-
lows:

K{= [0‘0045 —0.0004 -—27.5484]

Kj= [0.0010 —0.0001 -—20.7420]

T T T T T Y T

zalt)

-3 % 10“‘0 0f2

04 06 08 1 12 14 16 1F 2
Time (years)
Fig. 3. Comparison of time responses X 3 of the

controlled fuzzy system: analog (solid), proposed with
N=5 (dashed) , proposed with N=2 (dash-dot),
proposed with N=1 (dotted).

1x10°%

ez(t)

~2.5 % 107

0 02 04 06 08 1 12 14 16 18 2

Time (years)

Fig. 4. Comparison of time responses € 5 of the
controlled fuzzy system: analog (solid), proposed with
N=5 (dashed) , proposed with N=2 (dash-dot), proposed
with N=1 (dotted).
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We wish to digitally redesign the analog controller for
T=0.01 as increasing N=1,N=2, and N=5. From
Theorem 1, IDR problem is feasible for three cases:

Ky 0.0031 -0.0003 —20.2755
Koy 0.0007 -0.0001 —15.8075
for T=0.01 and N=1.
Ky _ 0.0037 —0.0003 —23.3984
Koy 0.0008 —0.0001 -17.9767
for T=0.01 and N=2.
Ky, 0.0041 -0.0004 -—25.7394
Koy 0.0009 -0.0001 ~19.5405
for T=0.01 and N=5.
0.025 ; e :
002}
0.015
Soa}
’n
oyt
0005t ;1' }E
:f‘\"\‘?
O""le \g;\- TR TR
00055353 of::’w()ié 08 1 12 14 15 15 2

Tine (years)

Fig. 5. Comparison of time responses e, of the
controlled fuzzy system: analog (solid), proposed with
N=5 (dashed) , proposed with N=2 (dash-dot), proposed
with N=1 (dotted).

Figure 1, 2, and 3. show the state responses of the
simulation, and Fig. 4, 5, and 6. show the error re-
sponses of the simulation, Control input is activated at
t=0.2. Before the control input is activated, the trajecto-
ries do not converge to their equilibrium points. After
the control input is activated, all trajectories are guided
to the equilibrium at the origin. Furthermore, as shown
in the figure, the state-matching error effectively de—
creases as N increases. As one can immediately wit—
nesses, the state trajectory by our approach is almost
identical to that of the original analog system.

0.5 x 108 ey . —
o g,:}‘;‘
£
< 3
N B
0 T 0 06 08 1 12 14 16 13 2

Time (years)
Fig. 6. Comparison of time responses e of the

controlled fuzzy system: analog (solid), proposed with
N=5 (dashed) , proposed with N=2 (dash-dot), proposed
with N=1 (dotted).

5. Conclusions

This paper proposed the multirate control design using
the LMI approach for the fuzzy system. Some sufficient
conditions were derived for stabilization and state
matching of the discretized model by the compensated
bilinear transformation. The proposed multirate control
scheme can improve the state-matching performance in
the long sampling limit.
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