DOI QR코드

DOI QR Code

Analysis of Self-Pulsation Characteristics in Multi-Section Complex-Coupled DFB Lasers With Amplifying Optical Feedback

증폭된 광 귀환을 가자는 다중 전극 복소 결합 DFB 레이저에서 발생되는 self-pulsation 특성 해석

  • 김상택 (숭실대학교 정보통신전자공학부) ;
  • 김태영 (숭실대학교 정보통신전자공학부) ;
  • 김부균 (숭실대학교 정보통신전자공학부) ;
  • 임영안 (한국전자통신연구원 기반기술연구소 광소자연구부) ;
  • 박경현 (한국전자통신연구원 기반기술연구소 광소자연구부)
  • Published : 2005.12.01

Abstract

We investigate the pulsation characteristics in a multi-section DFB laser which is composed of one DFB section, phase tuning section, and gain section. Multi-section DFB lasers with anti-phase (AP) complex-coupled (CC) DFB structure show wide current ranges of gain and phase tuning sections fer stable pulsations compared to those with in-phase CC DFB structure or index-coupled DFB structure. For multi-section DFB lasers with AP CC DFB structure, the current range of a gain section for stable pulsations increases and the tuning range of the pulsation frequency increases as a coupling strength or a gain coupling coefficient increases Also, the tuning range using the phase variation in a phase tuning section increases. For a fixed coupling strength, the current ranges of gain and phase tuning sections for stable pulsations increase and the tuning range of the pulsation frequency increases as the length of a DFB section increases.

하나의 DFB 영역, 위상 조정 영역과 이득 영역으로 구성된 다중 전극 DFB 레이저의 pulsation 동작 특성을 살펴본다. Anti-phase (AP) complex-coupled (CC) DFB 구조를 사용한 경우가 in-phase CC DFB 구조나 index-coupled DFB 구조를 사용한 경우에 비하여 안정된 pulsation 동작이 발생하는 이득 영역과 위상 조정 영역의 전류 범위가 큼을 알 수 있다. AP CC DFB 구조를 사용한 경우 결합 세기가 커질수록, 이득 결합 계수가 커질수록 안정된 pulsation 동작이 발생하는 이득 영역의 전류 범위가 증가하고 pulsation 주파수의 튜닝 영역이 커짐을 볼 수 있다. 또한 위상 조정 영역의 위상 변화에 의한 pulsation주파수의 튜닝 영역도 커짐을 볼 수 있다. 고정된 결합 세기에서 DFB 영역의 길이가 증가할수록 pulsation 동작이 발생하는 위상 조정 영역과 이득 영역의 전류 범위가 증가하여 pulsation 주파수 튜닝 영역이 넓어짐을 볼 수 있다.

Keywords

References

  1. B. K. Mathason and P. J. Delfyett, 'Pulsed injection locking dynamics of passively mode-locked external-cavity semiconductor laser systems for all-optical clock recovery,' IEEE.J. Lightwave Technol., vol. 18, pp. 1111-1120, 2000 https://doi.org/10.1109/50.857757
  2. R. Ludwig, A. Ehrhard, W. Pieper, E. Jahn, N. Agrawal, H.-J. Ehrke, L. Kuller, and H. G. Weber, '40 Gbit/s demultiplexing experiment with 10GHz all-optical clock recovery using a modelocked semoconductor laser,' Electron. Lett., vol. 32, no. 4, pp. 327-329, 1996 https://doi.org/10.1049/el:19960219
  3. C. Bornholdt, S. Bauer, M. Mohrle, H.-P. Nolting, and B. Sartorius, 'All optical clock recovery at 80GHz and beyond,' ECOC2001, Th.F.1.2, Amsterdam, Netherlands, 2001
  4. O. Brox, S. Bauer, M. Radziunas, M. Wolfrum, J. Sieber, J. Kreissl, B. Sartorius, and H.-J. Wunsche, 'Highfrequency pulsations in DFB-lasers with amplified feedback,' IEEE .J. Quantum Electron., vol. 39, no. 11, pp. 1381-1387, 2003 https://doi.org/10.1109/JQE.2003.818313
  5. W. Mao, X. Wang, M. AI-Mumin, and G. Li, '40 Gbit/s all-optical clock recovery using two-section gain-coupled DFB laser and semiconductor optical amplifier,' Electron. Lett., vol, 37, no. 21, pp. 1302-1303, 2001 https://doi.org/10.1049/el:20010873
  6. I. Ogura, H. Kurita, T. Sasaki, and H. Yokoyama, 'Precise operation-frequency control of monolithic mode-locked laser diodes for high-speed optical communication and all-optical signal processing,' Opt. Quantum Electron., vol. 33, pp. 709-725, 2001 https://doi.org/10.1023/A:1017511214111
  7. Dae-Su Yee, Young Ahn Leem, Sung-Bock Kim, Dong Churl Kim, Kyung Hyun Park, Sang-Taek Kim, and Boo-Gyoun Kim, 'Loss-coupled DFB lasers with amplified optical feedback for optical microwave generation,' Opt. Lett., vol. 29, no. 19, pp. 2243-2245, 2004 https://doi.org/10.1364/OL.29.002243
  8. M. Mohrle, B. Sartorius, C. Bornholdt, S. Bauer, O. Brox, A. Sigmund, R. Steingruber, M. Radziunas, and H.-J. Wunsche, 'Detuned grating multisection-RW-DFB lasers for high-speed optical signal processing,' IEEE J. Select. Topics on Quantum Electron., vol. 7, no. 2, pp. 217-223, 2001 https://doi.org/10.1109/2944.954133
  9. B.-S. Kim, Y. Chung, and J.-S. Lee, 'An Efficient Split-Step Time-Domain Dynamic Modeling of DFB/DBR Laser Diodes,' IEEE J. Quantum Electron., vol. 36 no. 7, pp. 787-794, 2000 https://doi.org/10.1109/3.848349
  10. J. E. Carroll, J. Whiteaway, and D. Plumb, Distributed feedback semiconductor lasers, SPIE, London, Ch. 7, 1998
  11. Hong-Seok Lee, Hong Kuk Kim, Boo-Gyoun Kim, and Byoungho Lee, 'Systematic Comparisons of the Effects of the Linewidth Enhancement factor, the Confinement factor, the Intemalloss and the Cavity length on the Above Threshold Characteristics of Quarter Wavelength Shifted DFB Lasers,' Microwave and Optical Technology Letters, vol. 27, no. 6, pp. 396-400, 2000 https://doi.org/10.1002/1098-2760(20001220)27:6<396::AID-MOP9>3.0.CO;2-E
  12. 김상택, 김태영, 지성근, 김부균, '다중 전극 index-coupled DFB 레이저에서 결합 세기 및 각 영역의 길이가 self-pulsation 동작 특성에 미치는 영향,' 한국광학회지, vol. 16, no. 1, pp. 85-98, 2005
  13. B. Jonsson, A. J. Lowery, H. Olesen, and B. Tromborg, 'Instabilities and nonlinear L-I characteristics in complexcoupled DFB lasers with antiphase gain and index gratings,' IEEE J. Quantum Electron., vol. 32, pp. 839-850, 1996 https://doi.org/10.1109/3.493009
  14. Sang-Taek Kim and Boo-Gyoun Kim, 'Analysis of single mode yields above threshold for complex-coupled distributed feedback lasers with asymmetric facet reflectivities,' J. Opt. Soc. Am. B, vol. 22, no. 5, pp. 1010-1015, 2005 https://doi.org/10.1364/JOSAB.22.001010