Medium Composition of Enterobacter cloacae YJ-1 for Maximizing Hydrogen Production

수소생산 증진을 위한 Enterobacter cloacae YJ-1의 배지조성

  • Lee Ki-Seok (Department of Environmental Engineering, Chonnam National University) ;
  • Kang Chang-Min (Department of Environmental Engineering, Chodang National University) ;
  • Chung Seon-Yong (Department of Environmental Engineering, Chonnam National University)
  • 이기석 (전남대학교 공과대학 환경공학과) ;
  • 강창민 (초당대학교 공과대학 환경공학과) ;
  • 정선용 (전남대학교 공과대학 환경공학과)
  • Published : 2005.10.01

Abstract

In order to maximize hydrogen production by Enterobacter cloacae YJ-1, anaerobic hydrogen producing bacteria, the medium composition was optimized. Glucose was better than other carbon sources in hydrogen production and its production was 975.4 mL/L at $2\%$ (w/v) for 48 h. Organic nitrogen sources were more effective than inorganic nitrogen sources and also yeast extract among organic nitrogens was the most effective in hydrogen production. Among metal ions, $Na_2MoO_4$ was most effective, and its production was 1753.3mL/L at $0.04\%$ (w/v). Addition of amino acid was very effective with compare to another components of medium, and cystein was most effective among them. Under the optimum medium obtained in batch culture, semi-batch culture in order to produce continuous hydrogen was run. The highest hydrogen production was earned at $3\%$(w/v) of glucose and the amount was 2215.4 mL/L.

수소생산을 최적화하기 위하여 Enterobacter cloacae YJ-1을 이용해 생산성에 미치는 탄소원 농도, 질소원 농도, 금속이온 농도, 아미노산 효과로서 회분식 배양을 통하여 실험을 수행하였다. 각종 탄소원의 종류에 따라 수소생산을 검토한 결과 glucose 첨가시에 가장 양호하였다. 따라서 glucose 농도를 변화시켜 수소생산량을 조사한 결과 $2\%$(w/v) 농도에서 최대를 보여 975.4 mL/L를 생산하였다. 각종 질소원 중에서 가장 효과적인 질소원은 yeast extract이었으며, 최대 수소생산량은 $1.5\%$(w/v) 농도에서 1651.5mL/L이었다. 금속이온으로는 $Na_2MoO_4$가 가장 효과적으로 나타나 $0.04\%$(w/v) 농도에서 1753.3 mL/L를 생산하였다. 아미노산은 cystein에서 가장 생산량이 많았으며, 다음은 proline, histidine, alanine 등 순이었다. 회분식 배양의 최적 조건하에 수소를 연속적으로 생산하기 위하여 반연속배양을 행한 결과 $3\%$ (w/v) 농도에서 2215.4 mL/L로 가장 높았다. 생산균주의 대사에 관한 물질을 보다 세밀히 조사하고 연속적인 수소생산을 살펴 산업적인 공정개발도 가능하리라 생각된다.

Keywords

References

  1. Sawada, H. and P. L. Rogers (1977), Phtosynthetic bacteria in waste treatment: Pure culture studies, J. Ferment. Technol. 55, 297-310
  2. Zajic, J. E., A. Margaritis, and J. D. Brosseau (1979), Microbial hydrogen production for replenishable resources, Int. J. Hydrogen Energy 4, 385-402 https://doi.org/10.1016/0360-3199(79)90101-0
  3. Archer, D. B. and J. A. Thompson (1987), Energy production through the treatment of wastes by microorganism, J. Appl. Bacteriol. Symp. Supp. 595-705
  4. Thangaraj, A. and G. Kulandaivelu (1994), Biological hydrogen production using dairy and sugarcane wastes, Bioresource Tech. 48, 9-12 https://doi.org/10.1016/0960-8524(94)90127-9
  5. Klemme, J. H. (1968), Photosynthetic growth of new isolated non-sulfur purple bacteria at the expense of molecular hydrogen, Arch. Microbiol. 64, 29-34
  6. Kim, J. S., K. Ito, K. lzaki, and H. Takahasi (1987), production of molecular hydrogen by a continuous culture under laboratory condition, Agri. BioI. Chem. 51, 2591-3593 https://doi.org/10.1271/bbb1961.51.2591
  7. Benemann, J. R. and N. M. Weare (1974), Hydrogen evolution by nitrogen-ftxing Anabana cylindrica cultures, Science 184, 174-175 https://doi.org/10.1126/science.184.4133.174
  8. Tanisho, S. and Y. Ishiwata (1980), Continuous hydrogen production from molasses by the bacterium Enterobacter aerogenes, Int. J. Hydrogen Energy 19, 807-812
  9. Tanisho, S., Y. Suzuki, and N. Wakao (1987), Fermentative hydrogen evolution from various substrates by Enterobacter aerogenes, Hakkokogaku 67, 29-34
  10. Van Andel, J. G., G. R. Zoutberg, P. M. Crabbendam, and A. M. Breure (1985), Glucose fermentation by Clostridium butyricum grown under a self generated gas atmosphere in chemostat culture, Appl. Microbiol. Biotechnol. 23, 21-26 https://doi.org/10.1007/BF02660113
  11. Gray, C. T. and H. Gest (1965), Biological formation of molecular hydrogen, Science 148, 186-192 https://doi.org/10.1126/science.148.3667.186
  12. Lee, K. S., C. M. Kang, and S. Y. Chung (2003), Isolation and characterization of hydrogen production bacterium, Korean J. Biotechnol. Bioeng. 18(2), 149-154
  13. Heyndrix, M., P. De Vos, B. Thibau, P. Stevens, and J. De Ley (1987), Effect of various external factors on the fermentative production of hydrogen gas from glucose by Clostridium butyricum strains in batch culture, System. Appl. Microbiol. 9, 163-168 https://doi.org/10.1016/S0723-2020(87)80072-3
  14. Yokoi, H., R. Maki, J. Hirose, and S. Hayashi (2002), Microbial production of hydrogen from strach-manufacturing wastes, Biomass and Bioenergy 22, 389-395 https://doi.org/10.1016/S0961-9534(02)00014-4
  15. Cimburkova, E., J. Zima, J. Novak, and Z. Vanek (1988), Nitrogen regulation of avermectius biosynthesis in Streptomyces aevermitilis in a chemically deftned medium, J. Basic Microbiol. 28, 491-499 https://doi.org/10.1002/jobm.3620280805