Development of Avermectin $B_{1a}$ High-yielding Mutants through Rational Screening Srategy based on Understanding of Biosynthetic Pathway

생합성 경로의 이해를 통한 Avermectin $B_{1a}$ 고생산성 변이주 개발

  • Song Sung Ki (Division of Life Sciences, Kangwon National University) ;
  • Jeong Yong Seob (Department of Food Science & Technology, Chonbuk National University) ;
  • Chun Gie-Taek (Division of Life Sciences, Kangwon National University)
  • Published : 2005.10.01

Abstract

Avermectin (AVM) $B_{1a}$ produced by Streptomyces avermitilis via polyketide pathway is a secondary metabolite with powerful anthelmintic and insecticidal activities, thus being used as an efficient agent in the field of agriculture and animal health. It has been reported that a precursor for AVM $B_{1a}$ biosynthesis was isoleucine and the biosynthetic pathway of AVM $B_{1a}$ was closely similar to that of fatty acid. Based on understanding of the biosynthetic pathway of AVM $B_{1a}$, we intended to screen various mutants resistant against O-methyl threonine (OMT), an isoleucine-anti metabolite, and/or mutants resistant against p-fluoro phenoxy acetic acid (pFAC), an inhibitor of fatty acid biosynthesis. It was inferred that these mutants could produce AVM $B_{1a}$ more efficiently, due to the acquired capability of not only overproducing isoleucine intracellularly but also channelling metabolized carbon-sources into the polyketide pathway, thus leading to enhanced biosynthesis of AVM $B_{1a}$. The resulting mutant (PFA-1 strain) resistant against 100 ppm of pFAC was able to produce approximately 42 fold higher amount of AVM $B_{1a}$ compared to the parallel mother strain (4,200 vs. 100 units/l). In addition, through the process of continuous strain improvement program carried out by gradually increasing the OMT concentration, it was possible to obtain a more attractive mutant with greater AVM $B_{1a}$ production capacity (9,000 units/l). Notable was that significantly higher producer (12,000 units/l) could be selected through further screening of the resistant mutants, this time, to even higher concentration of PFAC. Meanwhile, through the analysis of AVM Bla production histograms (i.e., number of strains according to their AVM $B_{1a}$ biosynthetic ability) for the earlier strains in comparison with the high producers having the characteristics of resistance to OMT and pFAC, it was found that production stability of the high-yielding producers were remarkably improved, as demonstrated by the fact that larger proportion of the mutated strains had greater capability of AVM $B_{1a}$ biosynthesis ($71\%$ in the range between 5,000 and 7,000 units/L; $47\%$ in the range between 6,000 and 7,000 units/l). Based on these consequences, it was concluded that the rational screening strategy based on the understanding of the biosynthetic pathway of AVM $B_{1a}$ was very effective in obtaining high-yielding mutants with the features of enhanced production stability.

AVM $B_{1a}$는 Streptomyces avermitilis가 생합성하는 이차대사산물로, 강력한 구충효과를 갖는 polyketide 계열의 물질이다. AVM $B_{1a}$ 생합성의 전구체로 isoleucine이 사용되고 AVM의 생합성 경로가 지방산 합성과 유사하므로, 전구체를 과량생합성하고 polyketide 생합성 경로로 진행되는 탄소원의 흐름이 증가된 변이주를 선별하기 위하여 isoleucine의 아미노산 유사체 (O-methyl threonine)와 지방산 합성 저해물질 (p-fluoro phenoxy acetic acid)에 대한 저항성 변이주를 선별하고자 하였다. 모균주의 AVM $B_{1a}$ 생산성은 약 100 units/L로 매우 낮은 반면, 100 ppm의 pFAC에 대한 저항성 변이주인 PFA-1는 약 4,200 units/1의 AVM $B_{1a}$를 생산하는 것으로 관찰되었다. 이 균주를 모균주로 하여 OMT에 대한 저항성을 지속적으로 증가시킬 경우 AVM $B_{1a}$ 생산성이 2배 더 증가한 약 9,000 units/1의 생합성 능력을 보이는 고생산성 변이주를 개발할 수 있었다. 또한 주목할 만하게도 지방산 저해물질인 PFAC에 대한 변이주의 저항성을 지속적으로 증가시킴으로써 AVM $B_{1a}$ 생산성이 11,000 units/L에 이르는 고역가 변이주를 선별할 수 있었다. 한편 상기의 OMT와 pFAC를 이용한 rational screening 전략을 통해 지속적으로 선별한 변이주들에 대한 AVM $B_{1a}$의 생산성 분포를 histogram을 통해 분석해 본 결과, 초반부에 선별된 돌연변이주들은 AVM $B_{1a}$의 생합성 능력에 있어서 거의 모두가 ($95\%$ 이상) 4,000 units/1 이하의 비교적 낮은 범위에 분포하는 반면, OMT와 pFAC의 농도를 높여가며 유도된 저항성 돌연변이주들의 경우에는 이들 중에 고생산성 균주의 비율이 뚜렷하게 증가 (OMT 에서 $5,000\~7,000$ unit/l 범위에 $71\%$; pFAC에서 $6,000\~7,000$ unit/L 범위에 $47\%$) 하는 것으로 확인되었다. 이로부터 polyketide 생합성 경로와 AVM $B_{1a}$의 생합성 경로의 이해를 통해 수행된 rational screening 전략이 AVM $B_{1a}$ 고생산성 뿐만 아니라 고 안정성의 특성을 갖는 균주를 선별하는데 매우 효율적임을 알 수 있었다.

Keywords

References

  1. Yoon, Y., E. S. Kim, Y. S. Hwang, and C. Y. Choi (2004), Avermectin: biochemical and molecular basis of its biosynthesis and regulation, Appl. Microbiol. Biotechnol. 63, 626-634 https://doi.org/10.1007/s00253-003-1491-4
  2. Kohler, P. (2001), The biochemical basis of anthelmintic action and resistance, Int J Parasitol. 31, 336-345 https://doi.org/10.1016/S0020-7519(01)00131-X
  3. Campbel, W. C., M. H. Fisher, E. O. Stapley, and G. Albers­Schonberg (1983), Ivermectin: A potent new antiparasitic agent, Science 221, 823 - 828 https://doi.org/10.1126/science.6308762
  4. Chen, S. T., O. D. Hensens, and M. D. Schulman (1989), Biosynthesis, In Ivermectin and abamectin, W. C. Campbell, Ed., p51, Springer-Verlag, New York
  5. Song, S. K. (2002), Development of high yielding stable mutants for avermectin $B_{1a} $production through rational screening method and examination of their fermentative physiological characteristics, M. S. Thesis, Division of Life Sciences, Kangwon National University, Chunchon
  6. Nielsen, J. (1998), The role of metabolic engineering in the production of secondary metabolites, Curr Opin Microbiol. 1, 330-336 https://doi.org/10.1016/S1369-5274(98)80037-4
  7. Curdova, E., V. Jechova, J. Zima, and Z. Vanek (1989), The effect of inorganic phosphate on the production of avermectin in Streptomyces avermitilis, J. Basic Microbiol. 29, 341-346 https://doi.org/10.1002/jobm.3620290607
  8. Ikeda, H., H. Kotaki, H. Tanaka, and S. Omura (1988), Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis, Antimicrob Agents Chemother. 32), 282-284 https://doi.org/10.1128/AAC.32.2.282
  9. Mironov, V. A., A. V. Sergeeva, A. V. Gavrilina, and V. N. Danilenko (2003), Dependence of the composition of the avermectin complex of Streptomyces avermitilis on glucose content of the growth medium, Prikl Biokhim Mikrobiol. 39, 208-212
  10. Sclrulman, M. D., D. Valentino, and O. Hensens (1986), Biosynthesis of the avetmectins by Streptomyces avermitilis. Incorporation of labeled precursors, J Antibiot (Tokyo) 39, 541-549 https://doi.org/10.7164/antibiotics.39.541
  11. Lyutskanova, D. G., M. M. Stoilava-Disheva, and V. T. Peltekova (2005), Increase in tylosin production by a commercial strain of Streptomyces fradiae, Appl Biochem Microbiol. 41, 165-168 https://doi.org/10.1007/s10438-005-0028-2
  12. Malina, H., C. Tempete, and M. Robert-Gero (1985), Enhanced sinefungin production by medium improvement, mutagenesis and protoplast regeneration of Streptomyces incarnatus NRRL 8089, J. Antibiot (Tokyo) 38, 1204-1210 https://doi.org/10.7164/antibiotics.38.1204
  13. Fiedurek, J., J. Rogalski, and Z. Ilczuk (1990), Intensification of glucose oxidase synthesis with Aspergillus niger by way of mutistage mutagenization, Acta. Biotechnologica 10, 357-362
  14. Rowlands, R. T. (1984), Industrial strain improvement: rational screens and genetic recombination techniques, Enyme Microbial Technol. 6, 290-300 https://doi.org/10.1016/0141-0229(84)90056-5
  15. Demain, A. L. (2000), Microbial biotechnology, Trens Biotechnol. 18, 26-31 https://doi.org/10.1016/S0167-7799(99)01400-6
  16. Volff, J. N. and J. Altenbuchner (1998), Genetic instability of the Streptomyces chromosome, Mol Microbiol. 27, 239-246 https://doi.org/10.1046/j.1365-2958.1998.00652.x
  17. Novak, J., J. Kopecky, O. Kofronova, and Z. Vanek (1993), Instability of the production of avetmectins, sporulation, and pigmentation in Streptomyces avermitilis, Can J. Microbiol. 39, 265-267 https://doi.org/10.1139/m93-038
  18. Drew, S. W. and A. L. Demain (1977), Effect of primary metabolites on secondary metabolism, Annu. Rev. Microbiol. 31, 343-356 https://doi.org/10.1146/annurev.mi.31.100177.002015
  19. Chen, K. C., Y. H. Lin, J. Y. Wu, and S. J. Hwang (2003), Enhancement of clavulanic acid production in Streptomyces clavuligerus with ornithine feeding, Enyme Microbial Technol. 32, 152-156 https://doi.org/10.1016/S0141-0229(02)00280-6
  20. Krupinski, V. M., J. E. Robbers, and H. G. Floss (1976), Physiological study of ergot: Induction of alkaloid synthesis by tryptophan at the enzymatic level. J. Bacteriol. 125, 158-165
  21. Zvenigorodskii, V. I., B. V. Tiaglov, and T. A. Voeikova (2001), Isolation of peptide antibiotic virginiamycin components and selection of their producer Streptomyces virginiae, Prikl Biokhim Mikrobiol. 37, 301-308
  22. Jin, Z. H., J. P. Lin, Z. N. Xu, and P. L. Cen (2002), Improvement of industry-applied rifamycin B-producing strain, Amycolatopsis mediterranei, by rational screening, J. Gen Appl Microbiol. 48, 329-334 https://doi.org/10.2323/jgam.48.329
  23. Gravius, B., T. Bezmalinovic, D. Hranueli, and J. Cullum (1993), Genetic instability and strain degeneration in Streptomyces rimosus, Appl Environ Microbiol. 59, 2220-2228
  24. Park, S. O. (2000), Establishment of screening procedure for high yielding mutants of lovastatin, and studies on their fermentation properties, M. S. Thesis, Division of Life Sciences, Kangwon National University, Chunchon