Analysis of Conservative Genes in Thermophilic and Hyperthermophilic Bacteria

고온성과 초고온성 세균의 보존적 유전자 분석

  • Lee Dong-Geun (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Jae-Hwa (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Ha Bae Jin (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Ha Jong-Myung (Department of Bioscience and Biotechnology, College of Engineering, Silla University) ;
  • Lee Jung-Hyun (Microbiology Laboratory, Korea Ocean Research and Development Institute) ;
  • Kim Sang-Jin (Microbiology Laboratory, Korea Ocean Research and Development Institute) ;
  • Lee Sang Hyeon (Department of Bioscience and Biotechnology, College of Engineering, Silla University)
  • 이동근 (신라대학교 공과대학 생명공학과) ;
  • 이재화 (신라대학교 공과대학 생명공학과) ;
  • 하배진 (신라대학교 공과대학 생명공학과) ;
  • 하종명 (신라대학교 공과대학 생명공학과) ;
  • 이정현 (한국해양연구원 미생물연구실) ;
  • 김상진 (한국해양연구원 미생물연구실) ;
  • 이상현 (신라대학교 공과대학 생명공학과)
  • Published : 2005.10.01

Abstract

Totally 16,299 conservative genes, commonly found in 13 thermophilic and hyperthermophilic bacteria, were analyzed. All genes were belong to W 67 COGs (clusters of orthologous groups of proteins). COGs related to protein metabolism were 80 among 167 COGs. Conservative genes were not limited only thermophiles and hyperthermophiles, meaning thermal stability is independent of specific protein. However reverse gyrase was only found in all hyperthermophilic archaebacteria and eubacteria, meaning DNA stability is important in hyperthermophiles. Hyperthermophilic eubacteria and thermophilic archaebacteria had different position between phylogenetic tree of gene content and 165 rRNA gene. Thermophilic archaebacteria hyperthermophilic eubacteria and archaebacteria had similar values by the statistical analysis of distance values with 167 COGs in each organism.

고온성 및 초고온성 세균과 고세균 13종 모두에서 관찰되는 167종류 총 16,299개의 보존적 유전자들에 대한 분석을 수행하였다. 단백질대사 관련 유전자들이 80개로 전체 보존적 유전자의 $47.9\%$였으며, 중온성 세균을 제외하고 고온성과 초고온성 세균들에서만 관찰되는 공통유전자는 없어 열 안정성은 특정 단백질의 유무에 따라 이루어지지 않는 것을 알 수 있었다. 하지만 초고온성 세균들은 reverse gyrase를 공통적으로 가지고 있어 고온에서의 DNA의 열안전성에 중요한 역할을 하는 것으로 생각되었다. 유전자보유 계통수와 165 rRNA 유전자 계통수의 비교결과 초고온성 진정세균과 고온성 고세균인 Methanobacterium thermoautotrophicum의 분포 양상이 서로 다르게 나타났다. 167개의 공통 유전자가 한 유전체에서 보이는 distance value들의 평균과 분산에서는 초고온성 진정세균, 초고온성 고세균, 고온성 고세균들끼리 유사한 값을 갖는 것으로 나타났다.

Keywords

References

  1. Radianingtyas, H. and C. Phillip (2003), Alcohol dehydrogenases from thermophilic and hyperthermophilic archaea and bacteria, FEMS Microbiol. Rev. 27, 593-616 https://doi.org/10.1016/S0168-6445(03)00068-8
  2. Haki, G. D. and S. K. Rakshit (2003), Developments in industrially important thermostable enzymes: a review, Biores. Technol. 89, 17-34 https://doi.org/10.1016/S0960-8524(03)00033-6
  3. Stetter, K. O. (1988), Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10, 172-173 https://doi.org/10.1016/S0723-2020(88)80032-8
  4. Tatusov, R. L., M. Y. Galperin, D. A. Natale, and E. V. Koonin (2000), The COG database,a tool for genome-scale analysis of protein functions and evolution, Nucleic Acids Res. 28, 33-36 https://doi.org/10.1093/nar/28.1.33
  5. Tatusov, R. L., E. V. Koonin, and D. L. Lipman (1997), A genomic perspective on protein families, Science 278, 631-637 https://doi.org/10.1126/science.278.5338.631
  6. Lee, D.-G., H.-Y. Kang, C.-M. Kim, S.-J. Kim, and J.-H. Lee (2002), Classification of Archaebacteria and Bacteria using a gene content tree approach, Korean J. Biotechnol. Bioeng. 18, 39-44
  7. Lee, D.-G., H.-Y. Kang, J.-H. Lee, and C.-M. Kim (2002), Detection of Conserved Genes in Proteobacteria by using a COG Algorithm, Korean J. Biotechnol. Bioeng. 17, 560-565
  8. http://www.ncbi.nlm.nih.gov/cog/new
  9. Ruiz, C., A. Blanco, F. I. J. Pastor, and P. Diaz (2002), Analysis of Bacillus megaterium lipolytic system and cloning of LipA, a novel subfamily I.4 bacterial lipase, FEMS Microbiol. Left. 217, 263-267 https://doi.org/10.1111/j.1574-6968.2002.tb11485.x
  10. Heath, C., A. C. Jeffries, D. W. Hough, and M. J. Danson (2004), Discovery of the catalytic fimction of a putative 2-oxoacid dehydrogenase multienzyme complex in the thermophilic archaean Thermoplasma acidophilum, FEBS Lett. 577, 523-527 https://doi.org/10.1016/j.febslet.2004.10.058
  11. Fukuchi, S. and K. Nishikawa (2001), Protein surface amino acid compositions distinctively differ between thermophilic and mesophilic bacteria, J. Mol. Biol. 309, 835-843 https://doi.org/10.1006/jmbi.2001.4718
  12. ftp://ftp.ncbi.nih.gov/genbank/genomes/Bacteria
  13. Amann, R., W. Ludwig, and K. H. ScWeifer (1994), Identification of uncultured bacteria: a challenging task for molecular taxonomists. ASM News 60, 360-365
  14. http://www.ncbi.nlm.nih.gov
  15. Matoba, K., K. Mayanagi, S. Nakasu, A. Kikuchi, and K. Morikawa (2002), Three-dimensional electron microscopy of the reverse gyrase from Sulfolobus tokodaii, Biochem. Bioph. Res. Co. 297, 749-755 https://doi.org/10.1016/S0006-291X(02)02255-6
  16. Jain, R., M. Rivera, and J. A. Lake (1999), Horizontal gene transfer among genomes : The complexity hypothesis, Proc. Natl. Acad. Sri. USA. 96, 3801-3806
  17. Woese, C. R. (1987), Bacterial evolution, Microbiol. Rev. 51, 221-271
  18. Montague, M. G. and C. A. Hutchison III (2000), Gene content phylogeny of herpesviruses, Proc. Natl. Acad. Sci. USA. 97, 5334-5339
  19. Kang, H.-Y., C.-J. Shin, B.-C. Kang, J.-H. Park, D.-H. Shin, J.-H. Choi, H.-G. Cho, J.-H. Cha, D.-G. Lee, J.-H. Lee, H.-K. Park, and C.-M. Kim (2002), Investigation of Conserved Gene in Microbial Genomes using in silico Analysis, Korean J. Life Sci. 5, 610-621
  20. Kimura, M. (1983), The neutral theory of molecular evolution, Cambridge University Press. London