DOI QR코드

DOI QR Code

Effect of Cinnamomum camphora Leaf Fractions on Insulin Action

3T3-L1 지방세포에서 녹나무 잎 추출분획물이 인슐린작용에 미치는 효과

  • Published : 2005.11.01

Abstract

In the present study, we screened candidates for enhancing insulin action and secretion from Cinnamomum camphora (CC) fractions, in 3T3-L1 adipocytes and Min6 cells by investigating insulin- stimulated glucose uptake and glucose-stimulated insulin secretion, respectively. CC were extracted by $70\%$ ethanol followed by XAD-4 column chromatography with serial mixture solvents of methanol and water, and the fractional extractions were utilized for determining insulin action and secretion, and $\alpha$-glucoamylase suppressing activity, A significant insulin-stimulated glucose uptake was observed in 3T3-L1 adipocytes, giving 0.5 or $5{\mu}g/mL$ of $40\%\;and\;60\%$ methanol fractions plus 0.2 nM insulin, compared to the treatment of DMSO plus 0.2 nM insulin. The treatments of $40\%\;and\;60\%$ methanol fractions plus 0.2 nM insulin reached the glucose uptake of 10 nM insulin treatment. The $40\%$ methanol fraction increased triglyceride accumulation by stimulating differentiation and triglyceride synthesis similar to pioglitazone, PPAR-$\gamma$ agonist. No inhibition of $\alpha$-glucoamylase activity of CC fractions was observed. They did not modulate the insulin secretion capacity In either low or high glucose media. These results suggest that $40\%$ methanol fraction contains a potential insulin sensitizer to have a similar function of PPAR-$\gamma$ agonist. Crude CC extract may improve glucose utilization by enhancing insulin-stimulated glucose uptake without elevating glucose stimulated insulin secretion.

일본에서는 녹나무 줄기에서 분리한 정유의 하나인 camphor는 강심제등 약용으로 사용하고 있지만, 녹나무 잎 추출물에 대한 연구도 적고 특히 항당뇨 효과에 대한 연구는 거의 없었다. 본 연구에서는 녹나무 잎 추출물이 in vitro에서 인슐린 작용, 인슐린 분비 또는 탄수화물의 소화에 효과적인지를 조사함으로 항당뇨에 효과적인지 여부를 조사하였다. 녹나무 잎을 $70\%$ 에탄올로 추출한 후 메탄올과 물을 섞은 용액으로 단계별로 XAD-4 column으로 분획 하였다. 녹나무 잎 추출물은 고농도(1 mg/mL)에서도 MTT로 측정하였을 때 세포 독성을 나타내지 않았다 녹나무 잎 추출분획 물 중 40과 $60\%$ 메탄올층은 3T3-L1 지방세포에 처리하였을 때 인슐린의 작용을 향상시켜 포도당의 흡수를 증가시키는 효과가 매우 컸다. 이 추출분획 물들은 3T3-L1 지방세포에 존재하는 인슐린의 작용을 향상시켜 인슐린을 10 nM을 처리한 것보다도 효과적으로 포도당 흡수를 증가시켰다. 또한 $40\%$ 메탄올층은 3T3-L1 섬유아세포에 분화 유도물질를 처리하였을 때 PPAR$\gamma$인 pioglitazone과 마찬가지로 지방 세포로의 분화를 촉진시키고 지방의 축적도 증가시켰다. 그러므로 $40\%$ 메탄올층에는 PPAR-$\gamma$ agonist로 작용하는 물질이 함유되어 있을 가능성이 높다. 베타세포라인인 Min6세포에 녹나무 잎 추출분획물을 처리한 후 저농도와 고농도 포도당 자극시 인슐린 분비를 측정하였을 때 두 농도에서 모두 인슐린 분비에 영향을 미치지 않았다. 또한 녹나무 잎 추출분획물은 탄수화물의 소화에 작용하는 효소인 $\alpha$-glucoamylase의 활성에 영향을 미치지 않았다. 결론적으로 녹나무 잎에는 인슐린 분비나 탄수화물의 소화에 관여하는 성분의 없지만, 인슐린 작용을 향상시키는 인슐린 민감성물질이 함유되어 있을 가능성이 높다. 특히 $40\%$ 메탄올층에는 PPAR$\gamma$ agnist로 작용하는 인슐린 민감성 물질이 존재할 가능성이 높다.

Keywords

References

  1. DeFronzo RA, Bonadonna RC, Ferrannini E. 1992. Pathogenesis of NIDDM: A balanced overview. Diabetes Care 15: 318-353 https://doi.org/10.2337/diacare.15.3.318
  2. Kadowaki T, Hara K, Yamauchi T, Terauchi Y, Tobe K, Nagai R. 2003. Molecular mechanism of insulin resistance and obesity. Exp Biol Med (Maywood) 228: 1111-1117 https://doi.org/10.1177/153537020322801003
  3. Min HK. 1992. Clinical characteristics of Korean diabetic patients. Korean J Diabetes 16: 163-170
  4. Kim J, Choi S, Kong B, Oh Y, Shinn S. 2001. Insulin secretion and sensitivity during oral glucose tolerance test in Korean lean elderly women. J Korean Med Sci 16: 592-597 https://doi.org/10.3346/jkms.2001.16.5.592
  5. Fineman MS, Bicsak TA, Shen LZ, Taylor K, Gaines E, Varns A, Kim D, Baron AD. 2003. Effect on glycemic control of exenatide (synthetic exendin-4) additive to existing metformin and/or sulfonylurea treatment in patients with type 2 diabetes. Diabetes Care 26: 2370-2377 https://doi.org/10.2337/diacare.26.8.2370
  6. Tosi F, Muggeo M, Brun E, Spiazzi G, Perobelli L, Zanolin E, Gori M, Coppini A, Moghetti P. 2003. Combination treatment with metformin and glibenclamide versus single-drug therapies in type 2 diabetes mellitus: a randomized, double-blind, comparative study. Metabolism 52: 862-867 https://doi.org/10.1016/S0026-0495(03)00101-X
  7. Oudjeriouat N, Moreau Y, Santimone M, Svensson B, Marchis-Mouren G, Desseaux V. 2003. On the mechanism of alpha-amylase. Eur J Biochem 270: 3871-3879 https://doi.org/10.1046/j.1432-1033.2003.03733.x
  8. Hae J. 1990. DongEuBoGam. NamSanDang, Seoul. p 140-142
  9. Takahashi N, Kawada T, Goto T, Yamamoto T, Taimatsu A, Matsui N, Kimura K, Saito M, Hosokawa M, Miyashita K, Fushiki T. 2002. Dual action of isoprenols from herbal medicines on both PPARgamma and PPARalpha in 3T3-L1 adipocytes and HepG2 hepatocytes. FEBS Lett 514: 315-322 https://doi.org/10.1016/S0014-5793(02)02390-6
  10. Kamei R, Kadokura M, Kitagawa Y, Hazeki O, Oikawa S. 2003. 2' -benzyloxychalcone derivatives stimulate glucose uptake in 3T3-L1 adipocytes. Life Sci 73: 2091-2099 https://doi.org/10.1016/S0024-3205(03)00563-0
  11. Ju YS, Park S, Ko BS. 2002. Effect of insulin-like action and insulin signal transduction on 3T3-L1 adipocytes from Coisis semen. Korean J Chinese Med 23: 103-114
  12. Ko BS, Kim HK, Park S. 2002. Insulin sensitizing and insulin-like effects of water extracts from Kalopanax pictus NAKA fractions in 3T3-L1 adipocytes, Korean J Agri Chem Biotech 45: 42-46
  13. Choi SB, Park S. 2002. The effects of water extract of Polygonatum odoratum (Mill) Druce on insulin resistance in 90% pancreatectomized rats. J Food Sci 67: 2375-2379 https://doi.org/10.1111/j.1365-2621.2002.tb09556.x
  14. Park S, Jun DW, Park CH, Jang JS, Park SK, Ko BS, Kim BJ, Choi SB. 2004. Hypoglycmic effects of crude extracts of Moutan Radicis Cortex. Korean J Food Sci 36: 472-477
  15. Choi BS, Park S. 2002. A steroidal glycoside from Polygonatum odoratum (Mill.) Druce. improves insulin resistance but does not alter insulin secretion in 90% pancreatectomized rats. Biosci Biotech Biochem 66: 2036-2043 https://doi.org/10.1271/bbb.66.2036
  16. Stubbs BJ, Specht A, Brushett D. 2004. Essential oil of Cinnamomum camphora (L.) Nees and Eberm.-variation in oil composition throughout the tree in two chemotypes from Eastern Australia. J Essential Oil Res 16: 155-159
  17. Ball AJ, Flatt PR, McClenaghan NH. 2000. Stimulation of insulin secretion in clonal BRIN-BD11 cells by the imidazoline derivatives KU14r and RX801080. Pharmacol Res 42: 575-579 https://doi.org/10.1006/phrs.2000.0739
  18. Ciaraldi TP, Kong AP, Chu NV, Kim DD, Baxi S, Loviscach M, Plodkowski R, Reitz R, Caulfield M, Mudaliar S, Henry RR 2002. Regulation of glucose transport and insulin signaling by troglitazone or metformin in adipose tissue of type 2 diabetic subjects. Diabetes 51: 30-36 https://doi.org/10.2337/diabetes.51.1.30
  19. Krenisky JM, Luo J, Carney JR 1999. Isolation and antihyperglycemic activity of bakuchiol from Otholobium pubsecens (Fabaceae), a peruvian medicinal plant used for the treatment of diabetes. Biol Pharm Bull 22: 1137-1140 https://doi.org/10.1248/bpb.22.1137
  20. Hong SJ, Fong JC, Hwang JH. 2000. Effect of crude drugs on glucose uptake in 3T3-L1 adipocyte, Gaxiong Yi Xue Ke Xue Za Zhi 16:445-451
  21. Huo H, Guo X, Hong S, Jiang M, Liu X, Liao K. 2003. Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. J Biol Chem 278: 11561-11569 https://doi.org/10.1074/jbc.M211785200
  22. Gerhold DL, Liu F, Jiang G, Li Z, Xu J, Lu M, Sachs JR, Bagchi A, Fridman A, Holder DJ, Doebber TW, Berger J, Elbrecht A, Moller DE, Zhang BB. 2002. Gene expression profile of adipocyte differentiation and its regulation by peroxisome proliferation-activated receptor-gamma agonists. Endocrinology 143: 2106-2118 https://doi.org/10.1210/en.143.6.2106
  23. Miki H, Yamauchi T, Suzuki R, Komeda K, Tsuchida A, Kubota N, Terauchi Y, Kamon J, Kaburagi Y, Matsui J, Akanuma Y, Nagai R, Kimura S, Tobe K, Kadowaki T. 2001. Essential role of insulin receptor substrate 1 (IRS-1) and IRS-2 in adipocyte differentiation. Mol Cell Biol 21: 2521-2532 https://doi.org/10.1128/MCB.21.7.2521-2532.2001
  24. Yamamoto H, Kurebayashi S, Hirose T, Kouhara H, Kasayama S. 2002. Reduced IRS-2 and GLUT4 expression in PPAR gamma 2-induced adipocytes derived from C/ EBPbeta and C/EBPdelta-deficient mouse embryonic fibro-blasts. J Cell Sci 115: 3601-3607 https://doi.org/10.1242/jcs.00044
  25. Krentz AJ, Bailey CJ. 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411 https://doi.org/10.2165/00003495-200565030-00005
  26. Quesada I, Soria B. 2004. Intracellular location of KATP channels and sulphonylurea receptors in the pancreatic beta-cell: new targets for oral antidiabetic agents. Curr Med Chem 11: 2707-2716 https://doi.org/10.2174/0929867043364379
  27. Drucker DJ. 2001. Development of glucagon-like peptide-1-based pharmaceuticals as therapeutic agents for the treatment of diabetes. Curr Pharm Res 7: 1399-1412 https://doi.org/10.2174/1381612013397401
  28. Herrmann BL, Schatz H, Pfeiffer A. 1998. Continuous blood glucose monitoring: the acute effect of acarbose on blood glucose variations. Med Klin 93: 651-655 https://doi.org/10.1007/BF03044876
  29. Carrascosa JM, Molero JC, Fermin Y, Martinez C, Andres A, Satrustegui, J. 2001. Effects of chronic treatment with acarbose on glucose and lipid metabolism in obese diabetic Wistar rats. Diabetes Obes Metab 3: 240-248 https://doi.org/10.1046/j.1463-1326.2001.00102.x
  30. Scheen AJ. 1998. Clinical efficacy of acarbose in diabetes mellitus: a critical review of controlled trials. Diabetes Metab 24: 311-320

Cited by

  1. Inhibitory Effect of Rumex Crispus L. Fraction on Adipocyte Differentiation in 3T3-L1 Cells vol.45, pp.1, 2013, https://doi.org/10.9721/KJFST.2013.45.1.90
  2. Synergistic Effects of Cinnamomum camphora Leaves Extract against Clinical Isolated Methicillin-resistant Staphylococcus aureus vol.28, pp.1, 2015, https://doi.org/10.7732/kjpr.2015.28.1.009