DOI QR코드

DOI QR Code

Infiltration Processing of Ceramic-Metal Composites: The Role of Wettability, Reaction, and Capillary Flow

  • Asthana Rajiv (Engineering and Technology Department, University of Wisconsin-Stout) ;
  • Singh Mrityunjay (QSS Group, Inc., NASA Glenn Research Center) ;
  • Sobczak Natalia (Department of Physical Chemistry of Metals and Alloys, Foundry Research Institute, Krakow, POLAND)
  • Published : 2005.11.01

Abstract

The infiltration of ceramics by liquid metals to fabricate ceramic-metal composites is discussed. In particular, the complexity of infiltrating ceramics by liquid metals at high temperatures due to interfacial reactions, metal oxidation, pore modulation and closure, and transient capillary forces has been highlighted. The role of these factors is discussed in the context of reactive infiltration with examples from ceramic/metal composites of practical interest. In addition to flow through porous ceramics, reactive penetration of dense ceramics via chemical dissolution and reaction is also discussed.

Keywords

References

  1. C. Garcia-Cordovilla, E. Louis, and J. Narcisco, 'Pressure Infiltration of Packed Ceramic Particulates by Liquid Metals,' Acta Mater., 47 [18] 4461-79 (1999) https://doi.org/10.1016/S1359-6454(99)00318-3
  2. R. Asthana, Solidification Processing of Reinforced Metals, Trans Tech, Switzerland (1998)
  3. E. J. Gonzalez and K. P. Trumble, 'Spontaneous Infiltration of Alumina by Cu-O Alloys,' J. Am. Ceramic Soc., 79 [1] 114-20 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb07888.x
  4. V. Kevokijan, 'Mg AZ80/SiC Composite Bars Fabricated by Infiltration of Porous Ceramic Preforms,' Metall. Mater. Trans., 35A 707-15 (2004)
  5. A. Lorenz, E. Sachs, S. Allen, L. Rafflenbeul, and B. Kernan, 'Densification of a Powder Metal Skeleton by Transient Liquid-Phase Infiltration,' Metall. Mater. Trans., 35A 631-40 (2004)
  6. P. Van Remoortere and P. Joos, 'About the Kinetics of Partial Wetting,' J. Colloid Interface Sci., 160 387-96 (1993) https://doi.org/10.1006/jcis.1993.1410
  7. J. Szekely, A. W. Neumann, and Y. K. Chuang, 'The Rate of Capillary Penetration and the Applicability of the Washburn Equation,' J. Colloid Interface Sci., 35 [2] 273-78 (1971) https://doi.org/10.1016/0021-9797(71)90120-2
  8. M. Letelier, H. J. Leutheusser, and C. Rosas, 'Refined Mathematical Analysis of the Capillary Penetration Problem,' J. Colloid Interface Sci., 72 [3]465-70 (1979) https://doi.org/10.1016/0021-9797(79)90347-3
  9. J. P. Ligenza and R. B. Bernstein, 'The Rate of Rise of Liquids in Fine Vertical Capillaries,' J. Am. Chem. Soc., 73 4636-38 (1951) https://doi.org/10.1021/ja01154a041
  10. K. A. Semlak and F. N. Rhines, 'The Rate of Infiltration of Metals,' Trans. AIME, 21 325-31 (1958)
  11. S. Y. Chong, H. V. Atkinson, and H. Jones, 'Effect of Ceramic Particle Size, Melt Superheat, Impurities, and Alloy Conditions on Threshold Pressure for Infiltration of SiC Powder Compacts by Aluminum-Based Melts,' Mater. Sci. Eng., A173 233-37 (1993)
  12. P. B. Maxwell, G. P. Martins, D. L. Olson, and G. R. Edwards, 'The Infiltration of Aluminum into Silicon Carbide Compacts,' Metall. Trans., 21B 475-85 (1990)
  13. R. Asthana and P. K. Rohatgi, 'Melt Infiltration of SiC Compacts. Part I: Study of Infiltration Dynamics', and 'Part II: Evaluation of Solidification Microstructures,' Z. Metallk., 83 [12]887-92 (1992), and 84 44-7 (1993)
  14. S. Y. Oh, J. A. Cornie, and K. C. Russel, 'Wetting of Ceramic Particulates with Liquid Aluminum Alloys: Part I. Experimental Techniques', and 'Part II. Study of wettability,' Metall. Trans., 20A 527-32 and 533-41 (1989)
  15. J. Narcisco, C. Garcia-Cordavilla, and E. Louis, 'Pressure Infiltration of Packed Alumina Particulates by Pure Silver,' Scripta Mater., 36 [4] 363-68 (1997) https://doi.org/10.1016/S1359-6462(96)00399-5
  16. E. Candan, H. V. Atkinson, and H. Jones, 'Role of Surface Tension in Relation to Contact Angle in Determining the Threshold Pressure for Melt Infiltration of Ceramic Powder Compacts,' Scripta Mater., 38 [6]999-1002 (1998) https://doi.org/10.1016/S1359-6462(97)00553-8
  17. E. Candan, H. V. Atkinson, and H. Jones, 'Effect of Magnesium Alloying Additions on Infiltration Threshold Pressure and Structure of SiC Powder Compacts Infiltrated Al-Based Melts,' J. Mater. Sci., 32 289-94 (1997) https://doi.org/10.1023/A:1018580711652
  18. E. Candan, H. V. Atkinson, and H. Jones, 'Effect of Ceramic Particle Size and Applied Pressure on Time to Complete Infiltration of Liquid Aluminum into SiC Powder Compacts,' J. Mater. Sci., 35, 4955-60 (2000) https://doi.org/10.1023/A:1004838610567
  19. J. Narcisco, A. Alonso, A. Pamies, C. Garcia-Cordavilla, and E. Louis, 'Wettability of Binary and Ternary Alloys of the System Al-Si-Mg with SiC Particulates,' Scripta Metall. Mater., 31 [1]1495-500 (1994) https://doi.org/10.1016/0956-716X(94)90063-9
  20. T. R. Jonas, J. A. Cornie, and K. C. Russell, 'Infiltration and Wetting of Alumina Particulate Performs by Aluminum and Aluminum-Magnesium Alloys,' Metall Mater. Trans., 26A 1491-97 (1995)
  21. A. Alonso, C. Garcia-Cordavilla, E. Louis, J. Narciso, and A. Pamies, 'Evaluation of the Wettability of AI-Pb and AI-Sn Alloys with SiC and Alumina Particulates by Means of Pressure Infiltration,' J. Mater. Sci., 19 4729-35 (1994)
  22. J. Narciso, A. Alonso, A. Pamies, C. Garcia-Cordavilla, and E. Louis, 'Factors Affecting Pressure Infiltration of Packed SiC Particulates by Liquid Aluminum,' Metall. Mater. Trans., 26A 983-90 (1995)
  23. J. M. Molina, R. Arpon, R. A. Saravanan, C. Garcia-Cordavilla, E. Louis, and J. Narciso, 'Threshold Pressure for Infiltration and Particle Specific Surface Area of Particle Compacts with Bimodal Size Distributions,' Scripta Mater., 51 623-27 (2004) https://doi.org/10.1016/j.scriptamat.2004.05.009
  24. E. Breval, M. K. Aghajanian, J. P. Biel, and S. Antolin, 'Structure of Aluminum Nitride/Aluminum and Aluminum Oxide/Aluminum Composites Produced by the Directed Oxidation of Aluminum,' J. Am. Ceram. Soc., 76 [7] 186568 (1993) https://doi.org/10.1111/j.1151-2916.1993.tb05324.x
  25. Y. Kajikawa, T. Nukami, and M. C. Flemings, 'Pressureless Infiltration of Aluminum Metal-Matrix Composites,' Metall. Trans., 26A 2155-59 (1995)
  26. A. R. Kennedy, J. D. Wood, and B. M. Weager, 'The Wetting and Spontaneous Infiltration of Ceramics by Molten Copper,' J. Mater. Sci., 35 2909-12 (2000) https://doi.org/10.1023/A:1004714407371
  27. W. B. Johnson and B. Sonuparlak, 'Diamond/Al Metalmatrix Composites Formed by the Pressureless Metal Infiltration Process,' J. Mater. Res., 8 [5] 1169-73 (1993) https://doi.org/10.1557/JMR.1993.1169
  28. J. T. Burke, C. C. Yang, and S. J. Canino, 'Processing of Cast Metal-Matrix Composites,' in Cast Metal-Matrix Composites, D.M. Stefanescu and S. Sen (eds.), Amer. Foundry Soc., Des Plaines, IL 141-51 (1994)
  29. T. R. Fletcher, J. A. Cornie, and K. C. Russel, 'Wettability of SiC Particulates with Zn and Zn-Al Alloys,' in Cast Reinforced Metal Composites, Fishman and Dhingra (eds.), Amer. Soc. for Materials, Materials Park, OH 21-5, (1988)
  30. N. Eustathopoulos, M. G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon (1999)
  31. J. V. Naidich, 'The Wettability of Solids by Liquid Metals,' in Progress in Surface and Membrane Science, D. A. Cadenhead and J. F. Danielli (eds.), Academic Press, New York, NY 353, (1981)
  32. R. Asthana and P. K. Rohatgi, 'On the Melt Infiltration of Copper Coated Silicon Carbide with an Al Alloy,' Compos. Manuf., 3 [2] 119-23 (1992) https://doi.org/10.1016/0956-7143(92)90124-D
  33. B. Palosz, in International Workshop on Processing and Characterization of Nanomaterials, Warsaw, Oct 8-10, 2003
  34. D. Goldberg, Y. Bando, K. Kurashima, and T. Sato, 'Synthesis and Characterization of Ropes Made of BN Multiwalled Nanotubes,' Scripta Mater., 44 1561 (2001) https://doi.org/10.1016/S1359-6462(00)00555-8
  35. N. Sobczak and R. Asthana, 'The Role of Interfacial Phenomena in Wetting-Bonding Relationship in Al/Ceramic Couples,' Ceramic Transactions, vol. 158, eds.: Weil, Reimanis, and Lewinsohn, 3-17, Am. Ceramic Society, Weterville, OH (2005)
  36. N. Sobczak, R. Asthana, M. Ksiazek, W. Radziwill, and B. Mikulowski, 'The Effect of Temperature, Alloying, and Substrate Coatings on the Relationship between Contact Angle and Interface Strength in$Al_2O_3/Al$ Couples,' Metall. Mater. Trans., 35A 911-24 (2004)
  37. N. Sobczak, 'Wettability and Reactivity between Molten Aluminum and Selected Oxides,' in Bulk and Graded Nanometals, K. J. Kurzydlowski and Z. Pakiela (Eds.), Trans Tech Publications Ltd, Published in Solid State Phenomena, vols. 101-102, pp. 221-226 (2005)
  38. N. Sobczak, L. Stobierski, W. Radziwill, M. Ksiazek, and M. Warmuzek, 'Wettability and Interfacial Reactions in $Al/TiO_2$,' in Surface & Interface Analysis, Special issue, 36 1067 -70 (2004)
  39. N. Sobczak, R Asthana, W. Radziwill, M. Ksiazek, R Nowak, and A. Kudyba, 'The Role of Aluminum Oxidation in the Wetting-Bonding Relationship of Al/Ceramic Couples,' in Proc. Int. Symp. Advanced Structural and Functional Material Design, Osaka (Japan), 10-12 Nov., 2004
  40. N. Sobczak, K. Nogi, H. Fujii, T. Matsumoto, K. Tamada, and R Asthana, 'The Effect of Cr Thin Films on Wettability and Bonding in Ni/Alumina Couples,' in Joining of Advanced & Specialty Materials, Indacochea et al. (eds.), ASM International, Materials Park, OH, 108-15 (2003)
  41. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos, 'Wettability of Monocrystalline Alumina by Al between Its Melting Point and 1273 K,' Acta Mater., 36 1797 (1988) https://doi.org/10.1016/0001-6160(88)90248-9
  42. J. D. Seitz, G. R. Edwards, G. P. Martins, and P. Q. Campbell, 'Infiltration Mechanisms and Kinetics of Liquid Aluminum,' in Interfaces in Metal-Ceramic Composites, RY. Lin et al. (eds.), The Minerals, Metals & Materials Soc., 197-212 (1989)
  43. R Asthana, 'Infiltration Processing of Single-Crystal SiC Platelet-Reinforced 2014 Al Composites,' Ph.D. Thesis, University of Wisconsin-Milwaukee (1991)
  44. A. Alonso, A. Pamies, J. Narcisco, C. Garcia-Cordovilla, and E. Louis, 'Evaluation of the Wettability of Liquid Aluminum with Ceramic Particulates (SiC, TiC, $Al_2O_3/Al$) by Means of Pressure Infiltration,' Metall. Trans., 24A 1423-32 (1993)
  45. J. Narcisco, C. Garcia-Cordovilla, and E. Louis, 'Pressure Infiltration in a Reactive System: Packed SiC Particulates Infiltrated by Pure Silver with Dissolved Oxygen,' Acta Mater., 45 [12] 5111-18 (1997) https://doi.org/10.1016/S1359-6454(97)00202-4
  46. A. Alonso, J. Narcisco, A. Pamies, C. Garcia-Cordovilla, and E. Louis, 'Effect of $K_2ZrF_6$ Coatings on Pressure Infiltration of Packed SiC Particulates by Liquid Aluminum,' Scripta Mater., 29 1559-64 (1993) https://doi.org/10.1016/0956-716X(93)90277-Y
  47. J. D. Muscat and R A. L. Drew, 'Modeling the Infiltration Kinetics of Molten Aluminum into Porous Titanium Carbide,' Metall. Trans., 25A 2357 (1994)
  48. D. Muscat, R. L. Harris, and R A. L. Drew, 'The Effect of Pore Size on the Infiltration Kinetics of Aluminum in Titanium Carbide Preforms,' Acta Metall. Mater., 42 [12] 415563 (1994)
  49. D. Muscat and R A. L. Drew, 'Infiltration Kinetics of Aluminum in Titanium Carbide Preforms,' in Proc. Int. Conf. High Temperature Capillarity, 29 June-2 July, 1997, Krakow, Poland, eds. N. Eustathopoulos and N. Sobczak, 261-267
  50. L. J. Masur, A. Mortensen, J. A. Cornie, and M. C. Flemings, 'Infiltration of Fibrous Preforms by a Pure Metal: Part II. Experiments,' Metall. Trans., 20A 2549-57 (1989)
  51. P. Sangsuwan, S. N. Tewari, J. E. Gatica, M. Singh, and R. Dickerson, 'Reactive Infiltration of Silicon Melt through Microporous Amorphous Carbon Preforms,' Metallurgical & Materials Transactions, 30B 933-44 (1999)
  52. A. Mortensen and T. Wong, 'Infiltration of Fibrous Performs by a Pure Metal: Part III. Capillary Phenomena,' Metall. Trans., 21A 2257-63 (1990)
  53. E. O. Einset, 'Analysis of Reactive Melt Infiltration,' J. Amer. Ceramic Soc., 79 [2] 333 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb08125.x
  54. A. Mortensen, C. San Marchi, and V. J. Michaud, 'Capillarity in Infiltration Processing: A Review of Principles and their Extension to Reactive Infiltration,' in Proc. Int. Conf High Temperature Capillarity, 29 June-2 July, 1997, Krakow (Poland), eds. N. Eustathopoulos and N. Sobczak, 249-260
  55. C. Garcia-Cordovilla, J. Narciso, R. Arpo, and E. Louis, J. Mater. Sci. Lett., 20 [5] 405-07 (2001) https://doi.org/10.1023/A:1010981909627
  56. J. X. Zhang, R. S. Chandel, and H. P. Seow, Science and Technology of Welding and Joining, 7 [3]182-86 (2002) https://doi.org/10.1179/136217102225002655
  57. R. M. Crispin and M. G. Nicholas, 'The Wetting and Bonding Behavior of Some Nickel Alloy-Alumina Systems,' J. Mater. Sci., 11 17 (1976) https://doi.org/10.1007/BF00541069
  58. G. P. Martins, D. L. Olson, and G. R. Edwards, 'Modeling of Infiltration Kinetics for Liquid Metal Processing of Composites, Metall. Trans., 19B 95-101 (1988)
  59. G. L. Batten, 'Liquid Imbibition in Capillaries and Packed Beds,' J. Colloid Interface Sci., 102 [2] 513 (1984) https://doi.org/10.1016/0021-9797(84)90254-6
  60. R. E. Loehman, K. Ewsuk, W. F. Fahrenholtz, and B. B. Lakshman, 'Ceramic-Metal Composite Formation by Reactive Metal Penetration,' in Key Engineering Materials, 127-131 431-38 (1997)
  61. V. J. Michaud and A. Mortensen, 'Capillarity in Isothermal Infiltration of Alumina Fiber Performs with Aluminum,' Metall. Trans., 25A 2145-52 (1994)
  62. V. M. Kevorkijan, 'The Reactive Infiltration of Porous Ceramic Media by a Molten Aluminum Alloy,' Composites Sci. & Tech., 59 683-86 (1999) https://doi.org/10.1016/S0266-3538(98)00116-X
  63. C. Toy and W. D. Scott, 'Ceramic-Metal Composite Produced by Melt Infiltration,' J. Am. Ceram. Soc., 73 [1] 97 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05097.x
  64. V. N. Eremenko and N. D. Lesnik, 'The Kinetics of the Infiltration of Porous Materials with Liquid Metals,' Role of Surface Phenomena in Metallurgy, V. N. Eremenko (ed.), 113, Consultant Bureau, NY
  65. E. Taheri-Nassaj, M. Kobashi, and T. Choh, 'Fabrication and Analysis of an in-situ $TiB_2/Al $Composite by Reactive Spontaneous Infiltration,' Scripta Mater., 34 [8] 1257-65 (1996) https://doi.org/10.1016/1359-6462(95)00639-7
  66. E. Fitzer and R. Gadow, 'Fiber-Reinforced Silicon Carbide,' Am. Ceram. Soc. Bull., 65 326-35 (1986)
  67. P. Pampuch, E. Walasek, and J. Bialoskorski, Ceramics International, 12 99 (1986) https://doi.org/10.1016/0272-8842(86)90023-4
  68. W. P. Minnear, 'Interfacial Energies in the Si/SiC System and the Si+C Reaction,' Comm. J. Am. Ceram. Soc., Jan, C10-11 (1982)
  69. P. Sangsuwan, J. A. Orejas, J. E. Gatica, S. N. Tewari, and M. Singh, 'Reaction-Bonded Silicon Carbide by Reactive Infiltration,' Ind. Eng. Chem. Res., 40 5191-98 (2001) https://doi.org/10.1021/ie001029e
  70. J. G. Li and H. Hausner, 'Wetting and Infiltration of Graphite Materials by Molten Silicon,' Scripta Metall. Mater., 32 [3] 377-82 (1995) https://doi.org/10.1016/S0956-716X(99)80068-5
  71. R. P. Messner and Y.-M. Chiang, 'Liquid-Phase Reaction Bonding of Silicon Carbide Using Alloyed Silicon-Molybdenum Melts,' J. Am. Ceram. Soc., 73 [5] 1193-200 (1990) https://doi.org/10.1111/j.1151-2916.1990.tb05179.x
  72. E. S. Nelson and P. Colella, 'Parametric Study of Reactive Melt Infiltration,' NASA TM 2000-209802, March 2000, NASA Glenn Research Center, Cleveland, OH
  73. G. Rajesh and R. B. Bhagat, 'Infiltration of Liquid Metals in Porous Compacts: Modeling of Permeabilities During Reactive Melt Infiltration,' Transport in Porous Media, 36 [1] 43-68 (1999) https://doi.org/10.1023/A:1006574912165
  74. M. G. Nicholas and S. D. Peteves, 'Reactive Joining: Chemical Effects on the Formation and Properties of Brazed and Diffusion-Bonded Interfaces,' Scripta Mater., 31 [8] 109196 (1994)
  75. R. Asthana, 'An Empirical Correlation between Contact Angles and Surface Tension in Some Ceramic-Metal Systems,' Metall. Trans., 25A 225-30 (1994)
  76. E. Fritzer and R. Gadow, 'Investigations of the Reactivity of Different Carbons with Liquid Silicon,' in Proc. Int. Symp. Ceramic Components for Engines (1983), 561-72 (1984), KTK Sci. Publ. (Tokyo)
  77. R. Asthana, 'Interface- and Diffusion-limited Capillary Rise of a Reactive Melt with a Transient Contact Angle,' Metall. Mater. Trans., 33A 2119-28 (2002)
  78. R. Asthana, 'On Reactive Capillary Flow with a Dynamic Contact Angle,' J. Mater. Processing & Manufacturing Sci., 10 [4] 187-97 (2003)
  79. R. Asthana, 'Dissolutive Capillary Penetration with Expanding Pores and Transient Contact Angles,' J. Colloid Interface Sci., 231 398-400 (2000) https://doi.org/10.1006/jcis.2000.7143
  80. R. Asthana, 'Dynamic Wetting Effects During Infiltration of Metals,' Scripta Mater., 38 [8] 1203-10 (1998) https://doi.org/10.1016/S1359-6462(98)00034-7
  81. M. Singh and D. Behrendt, 'Reactive Melt Infiltration of Silicon-Molybdenum Alloys into Microporous Carbon Preforms,' Mater. Sci. Eng., A194 193-200 (1995)
  82. T. J. Wlielan and A. T. Anderson, ''Wetting of SiC, $Si_3N_4$, and Carbon by Si and Binary Si Alloys,' J. Am. Ceram. Soc., 58 [9] 396-99 (1975) https://doi.org/10.1111/j.1151-2916.1975.tb19006.x
  83. N. Sobczak, 'Improvement of Wetting and Bonding of Dissimilar Materials,' in Interfacial Science in Ceramic Joining, Bellosi et al.(eds.), Kluwer Academic Publishers, The Netherlands, 27-42 (1998)
  84. D. Y. Kwok, C. J. Budziak, and A. W. Neumann, 'Measurements of Static and Low Rate Dynamic Contact Angles by Means of an Automated Capillary Rise Technique,' J. Colloid Interface Sci., 173 143-50 (1995) https://doi.org/10.1006/jcis.1995.1307
  85. P. G. De Gennes, 'Wetting: Statics and Dynamics,' Rev. Mod. Phys., 57, 827-63 (1985) https://doi.org/10.1103/RevModPhys.57.827
  86. T. D. Blake and J. M. Haynes, J. Colloid Interface Sci., 30 421-23 (1969) https://doi.org/10.1016/0021-9797(69)90411-1
  87. P. Joos, P. Van Remoortere, and M. Bracke, 'The Kinetics of Wetting in a Capillary,' J. Colloid Interface Sci., 136 [1] 189-97 (1990) https://doi.org/10.1016/0021-9797(90)90089-7
  88. N. Sobczak, ''Wetting, Structure and Properties of $Al/Al_2O_3$ Interfaces,' Kompozyty, 3 [7] 301-12 (2003)
  89. N. Sobczak, J. Sobczak, and P. K. Rohatgi, in Proc. ECO- MAP-98, Nov. 23-29, 1998, Kyoto, High-Temperature Society of Japan 195-205 (1999)
  90. E. Saiz and A. P. Tomsia, 'Kinetics of Metal-Ceramic Composite Formation by Reactive Penetration of Silicates with Molten Aluminum,' J. Am. Ceram. Soc., 81 [9] 2381-93 (1998) https://doi.org/10.1111/j.1151-2916.1998.tb02634.x
  91. R. E. Loehman, K. Ewsuk, and A. P. Tomsia, 'Synthesis of Alumina-Al Composites by Reactive Metal Penetration,' J. Am. Ceram. Soc., 79 [1] 27-32 (1996) https://doi.org/10.1111/j.1151-2916.1996.tb07876.x
  92. R. E. Loehman, K. G. Ewsuk, W. F. Fahrenholtz, and B. B. Lakshman, 'Ceramic-Metal Composite Formation by Reactive Metal Penetration,' in Key Eng. Mater., 127-131 431-38 (1997) https://doi.org/10.4028/www.scientific.net/KEM.127-131.431
  93. N. Sobczak, J. Sobczak, P. Rohatgi, M. Ksiazek, W. Radziwill, and J. Morgiel, 'Interaction between Ti or Cr Containing Copper Alloys and Porous Graphite Substrate,' in Proc. 2nd International Conference on High- Temperature Capillarity (HTC-2), 1997, N. Eustathopoulos and N. Sobczak (eds.), Foundry Research Institute, Krakow, Poland (1997), 146-51
  94. N. Grigorenko, V. Poluyanskaya, N. Eustathopoulos, and Y. Naidich, in Interfacial Science of Cermaic Joining, Bellosi et al. (eds.), Kluwer Academic Publishers, Boston, 6978 (1998)
  95. G. Levi and W. D. Kaplan, 'Oxygen Induced Interfacial Phenomena During Wetting of Alumina by Liquid Aluminum,' Acta Mater., 50 75-88 (2002) https://doi.org/10.1016/S1359-6454(01)00333-0
  96. M. Singh and D. R. Behrendt, 'Reactive Melt Infiltration of Silicon-Niobium Alloys in Microporous Carbon,' J. Mater. Res., 7 1701-08 (1994)
  97. J. M. Fernandez, A. Munoz, A. R. de Arellano Lopez, F. M. Varela-Feria, A. Dominiguez-Rodriguez, and M. Singh, 'Microstructure-Mechanical Property Correlation in Siliconized Silicon Carbide Ceramics,' Acta Materialia, 51 3259-75 (2003) https://doi.org/10.1016/S1359-6454(03)00157-5
  98. M. Singh and D. R. Behrendt, 'Studies on the Reactive Melt Infiltration of Silicon and Silicon-Molybdenum Alloys in Porous Carbon,' NASA TM-105860, NASA Lewis Research Center (1992)
  99. A. Munoz, J. Martinez-Fernandez, F. M. Varela-Feria, and M. Singh, in Joining of Advanced & Specialty Materials II, M. Singh et al. (eds.), ASM International, Materials Park, 25 (2000)

Cited by

  1. Nitridation-assisted Al infiltration for fabricating Al composites vol.52, pp.8, 2017, https://doi.org/10.1007/s10853-016-0571-7
  2. joining by local melt infiltration through laser cladding vol.101, pp.10, 2018, https://doi.org/10.1111/jace.15767