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ON DERIVATIONS IN NONCOMMUTATIVE
SEMIPRIME RINGS AND BANACH ALGEBRAS

Kyoo-HoNG PARK

ABSTRACT. Let R be a noncommutative semiprime ring. Suppose
that there exists a derivation d : R — R such that for all z € R,
either [{d(z),x],d(z)] = 0 or ({d(x),),d(z)) = 0. In this case
[d(z), %] is nilpotent for all z € R. We also apply the above results
to a Banach algebra theory.

1. Introduction

Throughout this paper, R will represent an associative ring and the
Jacobson radical of R will be denoted by rad(R). We write [z,y] for
the Lie product xy — yx and (z,y) denotes the Jordan product xy + yz.
Recall that R is semiprime if aRa = {0} implies a = 0 and is prime if
aRb = {0} implies a = 0 or b = 0. An additive mapping d : R — R is
called a derivation if d(xy) = d(x)y + xd(y) holds for all z,y € R.

Let us introduce the background of our investigation. In 1955, I. M.
Singer and J. Wermer obtained a fundamental result which started in-
vestigation into the ranges of derivations on Banach algebras [7]. The
result states that every continuous derivation on a commutative Ba-
nach algebra maps into the Jacobson radical. In the same paper they
conjectured that the assumption of continuity is not necessary. This is
called the Singer-Wermer conjecture. In 1988, M. P. Thomas[8] proved
the conjecture. Since then, a number of authors have presented many
noncommutative versions of the Singer-Wermer theorem (see, e.g., [5]
and references therein). In particular, B. D. Kim[3,4] has showed the
following result: let A be a noncommutative complex Banach alge-
bra. Suppose that there exists a continuous linear Jordan derivation
d: A — A such that for all z € A, either [d(z), z]d(z)[d(x), z] € rad(A)
or d(z)[d(z), z]d(z) € rad(A). In this case we have d(A) C rad(A4). Our
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goal in this note is to obtain another noncommutaive versions of the
Singer-Wermer theorem.

2. Results

The following lemma is due to J. Vukman[10].

LEMMA 2.1. Let R be a semiprime ring. Suppose that the relation
azb 4+ bxc = 0 holds for all z € R and some a,b,c € R. In this case
(a + ¢)xb = 0 is satisfied for all x € R.

First, let us prove the next two results in the ring theory in order
to apply it to the Banach algebra theory. The proof of these purely al-
gebraic results is elementary without any specific knowledge concerning
prime ring.

THEOREM 2.2. Let R be a noncommutative semiprime ring. Suppose
that there exists a derivation d : R — R such that [[d(x),z],d(z)] = 0
holds for all € R. In this case [d(z), z] is nilpotent for all z € R.

Proof. Suppose that the relation

that is,

(2.1) d(z)*x — 2d(z)zd(z) + zd(z)* = 0
holds for all z € A. The linearization of (2.1) leads to
(2.2) pi(z,y) +p2(z,y) =0, x,y € R,

where pi(x,y) is the sum of terms involving z and y such that
pk‘(mamy) = mkpk(xa y)a k=1,2 and m € Z.

Substituting —y for y in (2.2), we obtain by comparing this new result
with (2.2) that

0 =pi(z,y) = —d(x)* — d(z)d(y)z — d(y)d(z)z
+2d(z)zd(y) + 2d(z)yd(z) + 2d(y)zd(x)
—zd(z)d(y) - zd(y)d(z) — yd(z)?, =,y € R,
which yields
d(x)?y + d(z)d(y)e + d(y)d(c)e
(2.3) — 2d(z)zd(y) — 2d(z)yd(z) — 2d(y)zd(zx)
+zd(z)d(y) + zd(y)d(z) + yd(z)* =0, z,y € R.
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Substituting zy for y in (2.3), we then get
d(z)?zy + d(z)xd(y)z + d(z)?yz + zd(y)d(z)x
+ d(@)yd(@)e — 2d(2)a%d(y) — 2d(2)zd(x)y — 2d(x)ayd(z)
— 2zd(y)xd(z) — 2d(x)yzd(z) + xd(z)zd(y) + zd(z)?y
+ 22d(y)d(z) + zd(z)yd(x) + zyd(z)? =0, z,y € R.
In view of (2.1), this relation can be rewritten as
d(x)zd(y)z + d(x)*yz + zd(y)d(z)z + d(z)yd(x)z
~ 2d(x)2?d(y) — 2d(x)xyd(z)
(2.4) — 2zd(y)zd(z) — 2d(z)yxzd(x)
+ zd(x)zd(y) + 2%d(y)d(x)
+ zd(z)yd(z) + zyd(z)? =0, =z,y € R.

Left-multiplying by x in (2.3) and subtracting the result from (2.4), we
obtain

0= —zd(z)’y + [d(z), z]d(y)z + d(2)*yx
(2.5)  +d(@)y(d(z)r — 2zd(x)) + (z[d(z), 2] - 2[d(x), z]x)d(y)
+(Bzd(x) — 2d(x)x)yd(z), =,y € R.
Replacing y by yx in (2.5), we arrive at
0= —zd(z)*yz + [d(z), 2]d(y)z” + [d(z), 2]yd(z)z
+d(z)ya? + d(z)yx(d(x)z — 2xd(z))
(2.6) +(x[d(z), 2] — 2[d(z), xlx)d(y)z
+{ald(z), 7] - 20d(2), 7]z )yd(z)
+(3xd(z) — 2d(z)x)yxd(z), z,y € R.

Right-multiplying by z in (2.5) and subtracting the result from (2.6),
we have

[d(x), z)yd(z)z + d(z)y(3zd(z)z — d(x)a® — 22°d(x))
(2.7) + (xld(z), 2] — 2[d(x), z]z)yd(z)
+ (2d(z)x — 3zd(z))y[d(z),z] =0, z,y € R.
Putting f(x)y instead of y in (2.7), we have
[d(z), z]d(z)yd(z)z + d(z)*y(3zd(z)x — d(z)x* — 22%d(z))
(28)  + (z[d(x), 2] — 2[d(2), z]z)d(z)yd(z)
+ (2d(z)x — 3zd(x))d(z)yld(x),2] =0, z,y € R.
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Left-multiplying by d(z) in (2.7) and subtracting the result from (2.8),
we obtain

(2.9)  [ld(), 2], d(2)lyd(z)z + [z]d(2), 2] - 2[d(2), 2]z, d(z)]yd(z)
+[2d(x)x — 3zd(x), d(x)|yld(z),x] =0, =,y € R.

Calculating the relation (2.9) in view of (2.1), we have
(2.10) [d(z), 2]*yd(2) + [d(x), z]d(z)y[d(z),2] = 0, =,y € R.
Substituting y[d(x), z] for y in (2.10), we arrive at

[d(x), 2)*yld(2), 2]d(2) + [d(z), z]d(z)y[d(z),a]* =0, =z,y€R
which, from Lemma 2.1, yields the relation
(2.11) [d(z), z)*y[d(z), z]d(x) = 0, =z,y € R.
Replacing y by d(z)yld(z), z] in (2.11), we get

[d(z), z]?d(z)y[d(z), ]?d(x) =0, =z,y € R.

Since R is semiprime, we see that

(2.12) [d(z),z]%d(x) =0, xz€R.
By the hypothesis [[d(z), z], d(x)] = 0, we also obtain
(2.13) d(z)[d(z),z]> =0, z€R.

From (2.12), it follows that
0 = [[d(z), z]*d(), ]
(2.14) = [d(z), 2]’ + [[d(x), 2], 2][d(x), z]d(x)
+[d(z), z]([d(x), z], z]d(x), =€ R.
Right-multiplying by [d(z),z]? in (2.14) and combining (2.13) with the
result, we have
[d(z),2]° =0, ze€R,

which completes the proof of the theorem.

THEOREM 2.3. Let R be a noncommutative semiprime ring. Suppose

that there exists a derivation d : R — R such that {(d(z),z),d(z)) =0
holds for all x € R. In this case [d(z), z] is nilpotent for all z € R.

Proof. Suppose that the functional equation
{(d(z),z),d(z)) =0
holds for all z € R. In other words,
(2.15) d(z)*z + 2d(z)zd(z) + zd(z)> =0
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holds for all € A. The linearization of (2.13) leads to
(216) pl(xay)+p2(xay) :Oa T,y € R7
where pi(x,y) is the sum of terms involving z and y such that
pr(z,my) = m*pi(z,y), k=1,2 and m € Z.
Substituting —y for y in (2.16), we obtain by comparing the result with
(2.16) that
pi(z,y) = d(z)*y + d(z)d(y)z + d(y)d(z)z
(2.17) +2d(z)xd(y) + 2d(z)yd(z) + 2d(y)zd(zx)
+zd(x)d(y) + zd(y)d(z) + yd(z)* =0, =,y € R.
Putting 2y instead of y in (2.17) and using (2.15), we then get

d(z)zd(y)z + d(z)*yx + zd(y)d(z)z
(2.18) +d(z)yd(x)z + 2d(x)z d(y) + 2d(z)zyd(x)

+2zd(y)zd(z) + 2d(x)yxd(x) + xd(x)zd(y)

+2?d(y)d(z) + zd(z)yd(z) + zyd(z)> =0, =z,y € A.
Left-multiplying by z in (2.17) and subtracting the result from (2.18),
we obtain

0 = —ad(2)% + [d(z), a}d(v)z + d(x)ye

(2.19)  +d(z)y(d(z)z + 22d(z)) + (x[d(z), 2] + 2[d(z), z]z)d(y)
+(2[d(z), 2] + zd(z))yd(z), =,y€R.

Substituting yx for y in (2.19), we arrive at

0 = —zd(z)*yz + [d(x), 2]d(y)a® + [d(x), z]yd(z)z
+d(z)2yz? + d(z)yx(d(z)z + 2zd(x))
(2.20) +(z[d(z), z] + 2[d(x), z]x)d(y)x
+(z[d(z), 2] + 2[d(z), z]z)yd(z)
+(2[d(z), z] + zd(z))yzd(z), =,y € R.

Right-multiplying by z in (2.19) and subtracting the result from (2.20)
we have

[d(z), z)yd(z)x + d(z)y|z, d(x)x + 22d(x)]
(2.21) +(z[d(x), z] + 2[d(z), z]z)yd(x)
—(2[d(z), z] + zd(z))yld(z),2} =0, =z,y€ R
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Putting d(z)y instead of y in (2.21), we have

[d(z), z]d(z)yd(z)z + d(z)?y[z, d(z)x + 22d(z))
(2.22) +(zld(2), z] + 2[d(), z]z)d(z)yd(z)

—(2[d(z), z] + zd(z))d(z)y[d(z),z] =0, =z,y € R.

Left-multiplying by f(z) in (2.21) and subtracting the result from (2.22),
we obtain

(223)  [ld(=), =], d(z)lyd(z)z + [z]d(z), z] + 2[d(x), 2]z, d(z)]yd(z)
—[2[d(z), x] + zd(x), d(z)]y[d(z),z] =0, =z,y € R.
Substituting yd(z) for y in (2.23), we arrive at
(2.24)  [[d(z), 2], d(2)lyd(x)*z + [e]d(x), 2] + 2[d(2), 2]z, d(z)lyd(x)*
—[2[d(x), ] + zd(z), d(x)]yd(z)[d(z),z] =0, z,y € R.

Right-multiplying by d(z) in (2.23) and subtracting the result from
(2.24), we obtain

(2.25)  [[d(z), z], d(z)]yd(z)[d(z), ]

+lzd(z) + 2[d(2), 2], d(2)ly(ld(z), 2], d(z)] =0, z,y € R.
From Lemma 2.1, it follows that for all y € R,
(2.26) ([zd(z) + 2[d(z), 2], d(z)] + d(z)[d(z), z])yl[d(z), x], d(z)] = 0.

Since [zd(z) + 2[d(z), z], d(z)] + d(z)[d(z), ] = [[d(z), z],d(x)], the re-
lation (2.26) can be reduced to

[[d(z), z], d(=)]y[[d(z), ], d(z)} =0, =z,y€ R.
From semiprimeness of R, we conclude that
[[d(x), z],d(x)] =0, z€R.
Hence, Theorem 2.2 gives the result of the theorem.
Let A be a complex Banach algebra and let a € A. The spectral radius

of a, denoted by r(a), is defined by r(a) = inf{“a““"vli :n € Nj. If
r(a) = 0, then a is said to be quasinilpotent.

We first need the following lemma [1, Theorem].

LEMMA 2.4. Let A be a complex Banach algebra. Suppose that there
exists a continuous linear derivation d : A — A such that [d(z), ] is
quasinilpotent for all x € A. In this case we have d(A) C rad(A).
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By utilizing two results before, we now obtain the following results for
the Banach algebra theory, i.e., noncommutative versions of the Singer-

Wermer theorem. The method of the proof is similar to the one of J.
Vukman[9].

THEOREM 2.5. Let A be a noncommutative complex Banach algebra.
Suppose that there exists a continuous linear derivation d : A — A
such that [[d(z),z],d(z)] € rad(A) for all z € A. In this case we have
d(A) Crad(A). '

Proof. Following the result of A. M. Sinclair[6], every continuous lin-
ear derivation on a Banach algebra leaves the primitive ideals of A in-
variant. Therefore for every primitive ideal P C A, we can define a
linear derivation dp : A/P — A/P, where A/P is a factor Banach alge-
bra, by dp(%) = d(z) + P, £ = x + P for all z € A. Suppose that A is
noncommutative. We first observe that the assumption of the theorem
[[d(zx), z], d(z)] € rad(A), € A yields the relation [[d(%), 2], d(2)] = 0,
% € A/P. Since P is a primitive ideal, the factor algebra A/P is prime
and so it is semiprime. From Theorem 2.2, it is immediate that [d(%), #]
is nilpotent and so it is quasinilpotent for all # € A/P. We also see that
dp is continuous since A/P is semisimple [2]. Now, all the assumptions
of Lemma 2.4 are fulfilled. Thus we obtain that dp(A/P) C rad(A/P).
Again using the semisimplicity of A/P, we see that dp =0 on A/P. In
case A/P is commutative, we can conclude that dp = 0 on A/P as well
since A/P is semisimple and since we know that there are no nonzero
linear derivations on commutative semisimple Banach algebras. In both
cases, we obtain d(A) C P for any primitive ideal P. Since the intersec-
tion of all primitive ideals is the Jacobson radical rad(A4), it follows that
d(A) C rad(A). This completes the proof of the theorem.

THEOREM 2.6. Let A be a noncommutative complex Banach algebra.
Suppose that there exists a continuous linear derivation d : A — A such
that ((d(z),z),d(z)) € rad(A) for all z € A. In this case we have
d(A) C rad(A). '

Proof. The derivation dp on the semiprime factor algebra A/P in the
proof of Theorem 2.5 also gives ((dp(2),Z),dp(Z)) =0for all z € A/P
and so [d(%), Z] is nilpotent by Theorem 2.3. The remainder carry over
the same argument as in the proof of Theorem 2.5. Hence the proof of
the theorem is completed.
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