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ON SOME GRONWALL TYPE INEQUALITIES
FOR A SYSTEM INTEGRAL EQUATION

Byung-IL KM

ABSTRACT. In this paper we consider analogous of Gronwall-type
inequalities involving iterated integrals in the inequality (1.2) for
functions when the function u in the right-hand side of the in-
equality (1.2) is replaced by the function u?P for some p. These
inequalities are effective tools in the study of a system of an inte-
gral equation. We also provide some integral inequalities involving
iterated integrals.

1. Introduction

Let u : [, + h] — R be a continuous real-valued function satisfying
the inequality

0§u(t)§/t[a+bu(s)]ds for te€[a,a+h],

where a, b are nonnegative constants. Then u(t) < ahe®” for t € [, +
h]. This result was proved by T. H. Gronwall[6] in the year 1919, and
is the prototype for the study of several integral inequalities of Volterra
type, and also for obtaining explicit bounds of the unknown function.
The Gronwall type integral inequalities provide a necessary tool for the
study of the theory of differential equations, integral equations and in-
equalities of various types (see Gronwall[6] and Guiliano[7]). Some ap-
plications of this result to the study of stability of the solution of linear
and nonlinear differential equations may be found in Bellman[2]. Some
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applications to existence and uniqueness theory of differential equations
may be found in Nemyckii-Stepanov([8] and Bihari[3]. During the past
few years several authors (see references below and some of the ref-
erences cited therein) have established several Gronwall type integral
inequalities in two or more independent real variables. Of course, such
results have application in the theory of partial differential equations
and Volterra integral equations. ‘

Bainov and Simeonov obtained the following interesting Gronwall-
type inequality, which appear in [1, p.106]: Let u(t) and a(t) be contin-
uous functions in J = [a, (], let bi(¢t, s1,. .., sx) be nonnegative contin-
uous functions for o < g < --- < 81 <t < 3, and suppose that

u(t) < a(t)+kz::1 /at (/a (/a_ be(t, 1, . ,sk)u(sk)dsk) ) dsy

for t € J. Then u(t) < u(t), t € [a, 5], where u(t) is a solution of the
equation

(1.1)
u(t) = a(t)—{-; /: (/a " (/a' bi(t, 51, 5 5k )u(sk) dsk) > dsy
fort e J.

Finding an exact solution of a linear system of an integral equation
(1.1) often proves to be very difficult. Therefore such solutions are esti-
mated as, e.g., in the following theorem, which also appear in [1, p.107].

THEOREM 1.1. Letu(t) and a(t) be nonnegative continuous functions
in J = |a, ], with a(t) nondecreasing in J, and let f;(t,s),i=1,... ,n,

be nonnegative continuous functions for o« < s < t < (3 which are
nondecreasing in t for fixed s € J. If

vy <o+ [ nee ([ pwe -

x (/:H Faltnot, tn)ultn) dtn) .. -)dtl

for t € J, then u(t) < Ry(t,t), for t € J, where Ry(T,t) can be succes-

(1.2)
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sively determined from the formulas

R.(T, T)exp(/ Zszs)ds>

Ry(T,t) = Ejx Tt[ / FuolT RE:Z:E’T;) ds],

Ex(T,t) = exp (/ (:Zfz(TT fkTT)} dT)

fork=n—-1,...,1,a<t<T <8

In this paper we consider analogous of inequalities involving iterated
integrals in the inequality (1.2) for functions when the function w in the
right-hand side of the inequality (1.2) is replaced by the function u?
for some p. We also provide some integral inequalities involving iterated
integrals.

2. Some nonlinear inequalities

In this section we state and prove some new nonlinear integral inequal-
ities involving iterated integrals. The following two results are known
in [1).

LEMMA 2.1. Let b(t) and f(t) be continuous function for t > «, let
v(t) be a differentiable function for t > «, and suppose

o () < biew(t) + (), t2a

and v(a) < vg. Then, for t > a,

o(#) < vy exp ( /a "bs) ds) + /a " (s)exp < / ") dT> ds.

LEMMA 2.2. Let v(t) be a positive differential function satisfying the
inequality

V(t) < b(t)u(t) + k(t)P(t), teJ=]a,pl,
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where the functions b and k are continuous in J, and p > 0,p # 1, is a
constant. Then

v(t) < exp ( /a b0 d8> [v"(a) +4q /a k() exp <—q /a () d~f> ds] v

for t € [a, B1), where 3, is chosen so that the expression between [...] is
positive in the subinterval [a, £1).

The following nonlinear inequalities involving iterated integrals of the
Gronwall-type holds.

THEOREM 2.3. Let u(t) be nonnegative continuous function in J =
[ov, B] and a(t) be positive nondecreasing continuous function in J, and
let fi(t,s), i = 1,...,n, be nonnegative continuous functions for a <
s < t < 3 which are nondecreasing in t for fixed s € J. If

(2.1)
u(t) < a(t) +/ fl(t,t1)< fa(ti,t) -

2%

([ st ) atn) - )it

for t € J, where p > 0,p # 1, is a constant. Then u(t) < Yi(t,t), where
Y1(T,t) can be successively determined from the formulas

Yo (T,t) =exp (/at :g fi(T, s) ds)
x [aq(T) " /at P e (_q /: :2 fi(T,7) dr) ds] e

for t € [a, 1), with ¢ = 1 — p and By is chosen so that the expression
between |[...] is positive in the subinterval [, 31), and

Yi+1(T, ) ds}

Yi(T,t) = Ex(Tt) [G(T) + / flT Ey(T, s)

Ey(T,t) = exp (/ [Zfz(T T fk(T,T)} d7>,

fork=n—-1,...,1,a<t<T <3

(2.2)
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Proof. Fix T € («, 8. For a <t < T we obtain form (2.1),
(2.3)

u(t) < o(T /fthl

([ ([ @t ) - Jan.

Now we introduce the functions

+/atf1(:r,t1)
y (/t (/tn_lf (T, tn)up(tn)dtn) ~-->dt1,

mk(t Mi— 1 / fk T tk

x(/a (/; AT tm_ (¢ )dtn>--->dtk,

for t € [@,T] and k = 2,... ,n. Then the inequality (2.3) implies that
mi(a) =a(T),k=1,... ,n, and

u(t) <my(t) <--- <my(t), t € o, T].

Thus, induction with respect to k gives

(2.4)
(Z R = (D0 Jmn(®) + ST mees (D)
(2.5)
mi(6) < (Z ) ENORSRERIAT

fort € [, T],k = 1,2,... ,n — 1. Lemma 2.2 and the inequality (2.5)
imply that

t n—1
t)<exp( ZflTs )
sn—1 /g
UT) + fn(T, x( (T, )d)d}
a (1/ ) exp /; T)dr | ds

= Y, (T, 1)

X
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for a <t < T < 1. Applying the lemma 2.1 to inequality (2.4) for
k=n-1,...,2,1, we obtain

mi(t) < Ex(T, 1) ( / Fu(T Y’““ (T, ‘;’) ds ) CYi(T,1),

where the function Fy (T, t) is defined by (2.2). Hence we get
for @ <t < T < 3, which implies the result u(t) < Yi(¢,t) for T =t.

In the same manner we can prove the following theorem.

THEOREM 2.4. Let u(t) and a(t) be nonnegative continuous function
in J = o, 5], with a(t) be nondecreasing in J, and let fi(t,s), i =
1,...,n, be nonnegative continuous functions for « < s <t < (3 which
are nondecreasing in t for fixed s € J. If

u(t) < a(t) —I—/ fi(t, t1)

t t 1
X < f2(t1,t2)-.. (/ fn(tn-—1>tn)up(tn) dtn) ...>dt1

for t € J, where p > 1, is a constant. Then u(t) < Ri(t,t), where
Ry (T,t) can be successively determined from the formulas

1= (- 1e() [ t (; £, s>) ds]

i
i-p

Ru(T,t) = a(T)

for t € [a, Bp), with

Bp = sup {t € (a,8): (p— 1)ap‘1(T)/ (Z fi(T,s)ds < 1) } ,
o \i=1
and

Ru(T,t) = Ex( Tt[ / Fo(T Rg;fl:(rTs‘;) ds]

Ex(T,t) = exp ( /a [Z F(T,7) = fu(T, T)] ClT)

fork=n-1,...,1,a<t<T <5
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Proof. We start from the relation (2.3)—(2.4), which can be obtained
as in theorem 2.3. Thus, induction with respect to k gives

(2.6)  my(t (z Ji(T,t) — fu(T, t)) k(1) + fi (T, t)mpe (2)

fortefa,T),k=1,2,... ,n—1, and

My (t) = my 1 () + fu(T, )my_y (t)

k-2
SZ (T, )Mn—1(t) + faet (T, )mn(t) + fu(T, t)mE_, (t)

< (Lm0 mo
that is,

(2.7) mi (t) < R(T, t)ma(t),

where .
R(T,t) = (Z (T, t)) mPL(t).
i=1
Lemma 2.1 and the inequality (2.7) imply that
¢
(2.8) mn(t) < a(T)exp </ R(T,s) ds)

for o <t < T. From (2.8) we successively obtain

t

mE= (1) < (T exp ( [ o-vrs) ds),
)< @ #T0) e e [ o DR ds ),
Z(T,t) < (p - 1)<§::f, (T t)>ap 1 exp(/ Z(T, s)ds)

where Z(T,t) = (p — 1)R(T\,t). Consequently, we have

2e(~ [ 205) <o) (; FT) ) (1)
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or

C%{—exp(—— /: Z(T,7) dfﬂ <(p- 1)(gfi(T,s))ap‘l(T).

Integrating this from « to ¢ yields

1- exp(— /at Z(T,7) dT) < (p—1)a*~H(T) /: (2:; filT, 8)) ds,

from which we conclude that

1

exp< /a R d’T) < [1— (p — 1)a"~1(T) /a t (Z:; £(T, s)) ds]m.

This and (2.8) imply that
1

malt) < o(T) 1= (o= D) [ (5 51.9) dsJ By,
a =1

Applying the lemma 2.1 to inequality (2.6) for k =n —1,...,2,1, we
obtain

Ryt (T,s)

mi(t) < Ex(T,t) (a(t) "‘/ (T, 8) Ex(T,s)

ds> = Ry(T 1),
where the function Ex(T),t) is defined by (2.2). Hence we get

u(t) < ma(t) < Ry(T, 1)
for & <t < T < B3, which implies the result u(t) < R (¢,t) for T =1.

THEOREM 2.5. Let u(t) be nonnegative continuous function in J =
lo, 8], and let f;(t,s),i=1,... ,n, be nonnegative continuous functions
for o < s <t < 8 which are nondecreasing in t for fixed s € J. If

t1

u(t) < a+/t fl(t,t1)< fa(ta,t2) -

(29) x(f“yMMm%mmm%me%)"ym

[
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for t € J, where a > 1, is a constant. Then u(t) < a?'") where
Q1(T,t) can be successively determined from the formulas

tn—1
Qn(T,t) = exp ( Z fi(T,s) ds>

& =1

t sn—l 1/a
aq(T)+Q/ fn(Ta s)exp <_Q/ Zfi(T7T) dT) d8:|

for t € [, 51), with ¢ = 1 — p and B3, is chosen so that the expression
between |...] is positive in the subinterval [«, 3;), and

Qu(T,t) = Eﬂt[ /fk Q’““(Tf)ds},

Ey(T, 1) —exp</ [ZszT fkTT)}dT)

fork=n-1,... ,1,a<t<T <48

X

Proof. Fix T € (a, ). For @ <t < T we obtain form (2.9),

u t) < a—f—/tfl(T,tl)

« (/: (/: fulT, tn)u(tn)logu(tn)dtn) ...)dtl.

Now we introduce the functions
t
t) = (I+/ fl(T,tl)
(07

« (/: (/:H Fu(T, tn)u(tn)logu(tn)dtn> ---)dtl

for t € [o, T). Then m;(a) = a, the the function m;(¢) is nondecreasing
inteJ, u(t) <m(t), and

mi (t) < BT, tyma(#),
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where

B0 = A@H( [ A6

X (/tn_l (T, tn) logma (tn) dtn> ---dt2>.

That is,

(2.10) < B(T\, t).

By taking t = ¢; in (2,10) and then integrating it from « to t,t € [, f]
we obtain

¢
(2.11) logmi(t) < loga-l—/ B(T,t1)dt;.

[

Now by a suitable application of Theorem 1.1 to (2.11), we get
(2.12) logmi(t) < loga - Qq(T,t) = loga@(T?),

where Q1 (7, t) can be successively determined from the formulas

Qr(T,t) = aexp (/ Zf,-(T, s) ds) ,

Qr+1(T, s) ds]

Qk(T7t) = Ek(T,t) [a+/ fk(T7s) Ek(T, S)

Ex(T,t) —exp</ [Zf,TT fkTT)]dT>

fork=n-1,...,1,a<t<T < B. From (2.12) we observe that
(2.13) ma(t) < @@ ™Y,
Therefore by using (2.13) in u(t) < mi(t), we have the result

u(t) < a9 for t=T.
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3. Some companion inequalities

The following companion of the Gronwall-type inequality also holds.

THEOREM 3.1. Let u(t),a(t), b(t), fi,i=1,... ,n,andg;,j=1,...,
n — 1, be nonnegative continuous functions in J = [a, ], with a(t) and
b(t) are nondecreasing in J, and suppose that

w(t) < a() + b(t) [ / Fut)ulty) dis

(3.1) * /: 9 (tl)( :1 fa(t2)ultsz) dt2> dt, + - -

+ [ [t ([ st
x ( /a T () dtn) dtn_1> ) dtl},

fort € [a, 3]. Then

(3.2) u(t) < a(t) exp(b(t) /a tB(tl)dtl)
for t € [a, 3], where
B(t) = f1(t)
+91(?) [/: fa(t2) dts + /: 92(152)(/:2 fs(t3)dt3>dt2
(3.3) A

+ /at 92(t2)(/:2 g3(ts) - (/atn_zgn-l(tn—l)
x (/:M fn(tn)dtn> dtnﬂ) > dm]

Proof. Fix T € (a, ). For a <t < T we obtain form (3.1),

u(t) < a(T) + b(T) [/ fi(t)u(ty) dty + - - -

(3.4) s [ ([ ot ([ sl
« ( /a T ) dtn) )) dtl}.
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We denote the right-hand side of (3.4) by m(t) for t € [, T]. Then

m(a) = a(T), the the function m(t) is nondecreasing in t € J, u(t) <
m(t), and

(3.5) m'(£) < BT B()m(t),

where B(t) is defined by (3.3). Now by a suitable application of Lemma
2.1 to (3.5), we get

(3.6) m(t) < a(T) exp (b(T) / tB(tl)dtl)

«

for « <t < T < B. Therefore by using (3.6) in u(t) < m(t) and for
t = T we have the required inequality in (3.2) .

An essential element in the investigation of the integral inequalities
in the following theorem is the application of the result of Theorem 3.1.

THEOREM 3.2. Letu(t),b(t), fi,i=1,... ,n,andg;,j=1,... ,n—1,
be nonnegative continuous functions in J = [a, 8], with b(t) is nonde-
creasing in J, and suppose that

ult) < a+ b(1) [ [ ittty oguti)an

+ t (e ? fata)ults) logu(ts) dtz)dtl

[ «

(3.7) +-

+ /;91(751)(/;1 ga(t2) -+~ (/:n—z In-1(tn—1)
« ( /a " () Tog u(tn)dtn) dtn_l) ) dtl]

for t € |a, B], where a > 1 is a constant. Then
(3-8) u(t) < a&xP(0(®) [ B(t1)dty)

for t € [o, B8], where B(t) is defined by (3.3).
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Proof. Fix T € (a,(]. For a <t < T we obtain form (3.7),
(3.9)

u(t) < a+b(T) [/ fi(t1)u(ty) log u(ty) dty

4
+ /at gl@l)(/at1 g2(t2) - (/:_2 gn—1(tn-1)
« ( /a o fn(tn)u(tn)logu(tn)dtn) dtn-1> ) dtl}.

We denote the right-hand side of (3.4) by m(t) for ¢t € [, T]. Then
mi(a) = a, the the function m;(¢) is nondecreasing in ¢ € J, u(t) <
m1(t), and

(3.10) m|(t) < b(T)[f1(t)logmy(t) + g2(t) B1(t)]ma (¢),

where

Bl(t) :/ fg(tz) log ml(t2) dt2

«

+/t92(t2)< ’ f3(t3)10gm1(t3)dt3>dt2 4.

e «

+ /at 92(t2)(' - /atn_2 gn—1(tn-1)

X </tn_l frn(tn)logmi(ty,) dtn> dtp,_1-- ) dts.

Condition (3.10) imply that

m ()

(3.11) —

< H(D)[f1(t) logma(t) + g2(t) Ba (1))

By taking ¢t = t; in (3.11) and then integrating it from « to t,t € [o, ]
we have

t

(3.12) logma(1) < loga+b(T) / [1(t2) Tog ma (t1) -+ g2(t2) By (t1)] dty.

8]

Now by a suitable application of Theorem 3.1 to (3.12), we get

(3.13) logm(t) < loga - exp (b(T) /: B(tl)dtl)
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for o <t < T < 3, where the function B(t) is defined by (3.3). Therefore
by using (3.13) in u(t) < my(t) and for ¢ = T we have the required
inequality in (3.8) .

By a similar reasoning to the proof of Theorem 2.3 and Theorem 2.4,
we also can prove the following results.

THEOREM 3.3. Letu(t),b(t), fi,i=1,... ,n,andg;,j=1,...,n-1,
be nonnegative continuous functions in J = [a, 3], with b(t) is nonde-
creasing in J, a(t) > 0 is nondegreasing continuous function in J, and
suppose that

u(t) < a(t) + b(t) [ [ At an

«

+ /(: g1(t1)</:1 g2(t2) - (/:n_2 In—1(tn-1)
x (/:n_l Faltn)uP () dtn> dtn_l) > dtl}

for t € |a, 3], where p > 0,p # 1 is a constant. Then

(3.14) " /at gl(tl)( " fa(t2)uP(t2) dtg) dty + - --

t 1/q
(315)  u(t) < [aq(t>+qb<t) / [fl(t1>+gl(t1>B(t1>]dt1] ,

fort € |a, 1), where B(t) is defined in (3.3), and ¢ = 1 —p, (1 is chosen
so that the expression between |[...] is positive in the subinterval [, £1).

Proof. Fix T € (o, ). For a <t < T we obtain form (3.14),

u(t) < a(T) + b(T) [ / o) () diy
+ cee

(3:16) + [ ([ ot ([ ot
y ( /a o fn(tn)u”(tn)dtn> )) dtl].



On some Gronwall type inequalities for a system integral equation 803

We denote the right-hand side of (3.16) by m(t) for ¢t € [, T]. Then
m(a) = a(T), the the function m(t) is nondecreasing in ¢ € J, u(t) <
m(t), and

(3.17) m/(t) < b(T)[f1(t) + b1 (8) B(X)]m"(t),

where B(t) is defined by (3.3). Now by a suitable application of Lemma
2.2 to (3.17), we get

t i/q
(318)  m(t) < [aqm + gb(T) / (1) + g1 (t2) B(t) ]ty

for o <t < T < B,. Therefore by using (3.18) in u(t) < m(t) and for
t =T we have the required inequality in (3.15) .

THEOREM 3.4. Let u(t),a(t),b(t), fi,i=1,... ,n,and g;,5=1,...,
n — 1, be nonnegative continuous functions in J = |a, 3], with a(t) and
b(t) are nondecreasing in J, and suppose that

u(t) < alt) + b(t) [ / Ft WP (t) dty

+ /t 91(t1)< "’ fa(t2)uP(t2) dtz)dtl
(3.19) o :

+ /at gl(tl)(/j g2(t2) - </:_2 gn-1(tn—1)
x (/:H fn(tn)up(tn)dtn) dtn_l) > dtl}

for t € |a, 3], where p > 1 is a constant. Then

1

1-p

(3.20) u(t) < af(t) [1—(p—1)b(t)ap_1(t)/ [fl(tl)-}—gl(tl)B(tl)]dtl}

for t € o B,), where f, = sup{t € (0, 6) : (p = 1)b(t)a? = (2) [y [fa(t1) +
g1 (tl)B(tl)]dt1 < 1}.



804 Byung-Il Kim

Proof. We start from the relation (3.16)—(3.17), which can be ob
tained as in theorem 3.3. Thus gives

(3.21) m(t) < YDA + 0 OB 0),
where B(t) is defined by (3.3). That is
(3.22) m/(t) < R(T,t)m(t),

where
R(T,t) = 6(T)[/(t) + g1 (t) B(t)]mP~ ().

Lemma 2.1 and the inequality (3.22) imply that

(3.23) m(t) < a(T) exp ( /a "R(T.s) ds>
for a <t <T. From (3.23) we successively obtain
w0 <o @ e [ - VAT as),
RT.t) < B + 0B Dexp( [ (o= DR 5)ds ),
2.0 < (= DUDIAO + s B0 Do [ 2(T20)as)
where Z(T,t) = (p — 1)R(T, t). Consequently, we have

Z(T,t)exp (——/ Z(T,s) ds> < (p — DB(T)[f1(t) + g1 () B(t)]a?~H(T).

or

i [‘ exP(‘ / L) dﬂ < (p— DDA + 0O BBI"(T)

Integrating this from « to ¢ yields

1 — exp <- /a AT s) ds)

< (p~ 1) (T)B(T) / (1) + g1 (00) B(t1)] dta,
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from which we conclude that

exp (/at R(T,s) ds)
< [1 —(p = V)" H(T)NT) /:[fl(tl) + g1(t1) B(t)) dtl] ﬁ-

This and (3.23) imply that
(3.24)

m(t) < a(T) [1 ~ (p= 0@ (OUT) [ [A(e) +on(e)B(o) dtl] o

o4

for a <t < T < f3,. Therefore by using (3.24) in u(t) < m(t) and for
t =T, we have the required inequality in (3.20) .
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