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NEGATIVELY BOUNDED SOLUTIONS FOR A
PARABOLIC PARTIAL DIFFERENTIAL EQUATION

ZHONG Bo FANG AND MINKYU KwAK

ABSTRACT. In this note, we introduce a new proof of the unique-
ness and existence of a negatively bounded solution for a parabolic
partial differential equation. The uniqueness in particular implies
the finiteness of the Fourier spanning dimension of the global attrac-
tor and the existence allows a construction of an inertial manifold.

1. Introduction

The long-time behaviour of solutions of a parabolic partial differential
equation is often-times investigated in the framework of an infinite di-
mensional dynamical system. The wide class of partial differential equa-
tions including reaction diffusion system, Kuramoto-Sivashinsky equa-
tion, and 2D Navier-Stokes equations has the dissipative structure and
possesses the global attractor. Henceforth the general understanding of
the dynamics of the underlying partial differential equations is reduced
to the study of the geometric structure and dynamical property of the
global attractor. See [3] and [4] for details.

It is known in many cases that the global attractor has finite Haus-
dorff and fractal dimension. The next important questions would be
whether the Fourier spanning dimension of the global attractor is finite
and whether we can find a finite dimensional smooth manifold containing
it. These questions are rephrased as follows;

(1) The leading partial differential operator generates a complete or-
thogonal system of eigenfunctions and we can expand points on the
global attractor as Fourier series. Such an eigenfunction expansion has
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a natural orthogonal decomposition and we want to find out whether
the high frequency parts are uniquely determined by the low frequency
modes.

(2) An inertial manifold is a positively invariant finite dimensional
Lipschtz manifold which attracts every solutions at the exponential rates,
thus contains the global attractor obviously. Once it is known that the
Fourier spanning dimension is finite, we expect that the global attractor
is a part of graph of a mapping from low modes to high modes.

Many good theories have been developed during the last decades but
still much is unknown for important equations including 2D Navier-
Stokes equations.

The main purpose of this note is to introduce two new observations
regarding the above questions. We first introduce, in section 2, a new
proof of the injectivity of the spectral projection from the global at-
tractor to finite dimensional Fourier eigenspaces. We next introduce,
in section 3, an existence proof of negatively bounded solutions and it
follows an existence of an inertial manifold.

2. Injectivity of spectral projection

Let the ambient phase space H be a Hilbert space with an inner
product < -,- > and a norm || - ||. Let there be given a linear closed
unbounded positive self-adjoint operator A in H, with domain D(A) C
H. We assume that A~ is compact in H. We denote \; the eigenvalues
of A and ¢; the corresponding eigenvectors and we assume that

0<A <A<+, Aj— 0 as j— o0

and the eigenvectors form an orthonormal basis of H.
The evolution equation that we will consider is of the form

du
(2.1) - = —Au + F(u),

where F'(u) is a globally Lipschitz continuous in H, that is,
|IF(u) — F(v)|| < Kllu — |

for u,v € H and for some positive constant K.
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Let P be an orthogonal projection from H onto a finite dimensional
space spanned by {¢1,¢2,... ,¢n} and Q@ = I — P. Then H is orthogo-
nally decomposed as H = PH$®QH and if we write u = p+q = Pu+Qu,
then (2.1) can be rewritten as

pt = —Ap+ PF(p+q),

22) q = —Aq+ QF(p+q).

We now state the main result of this section.

THEOREM 1. Under the additional assumption that
(2.3) >\N+1 — AN > 4K,

there exists at most one solution of (2.2) with p(0) = po and ||q(t)]]
bounded for t < 0, for every po € PH.

Proof. Suppose, given pg, there exist two negatively bounded solution
uy and up with u1(t) = p1(t) + q1 (%), u2(t) = p2(t) + ¢2(t) and p1(0) =
p2(0) = po.

Define p = p3 — p1, 0 = ¢2 — ¢q1, then p, o solve

pt = —Ap+ PF(us) — PF(uy),

(2.4) oy = —Ac + QF (ug) — QF (uq).

We introduce A(t) = ||o(2)]|?/]|p(t)||? and notice that A(0) = oo and
A(t) must be unbounded for ¢ < 0.

1dA  <oy,0> |0

a 1. - < Pt P >
2 dt [lpl[? loll* "
A computation gives
Sl = <pep>
(2.5) = —||AZp||2+ < PF(uy) — PF(uy),p >

= =Anllpll* = KlJuz = uall[|pl]
= =Anllpll* = K/1lolI2 + llol2lell
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and

| &

“0’“2 =< 0%,0 >

[T
u

t
(2.6) = —||A%0]|?+ < PF(u3) — PF(uy),0 >
< —Antillo|? + Klluz — ui]| ||o]]

= =An+1llo]l? + Kv/]lpl2 + llol2]|o]].

Using (2.5) and (2.6), we have

1dA
5% < ‘AN+1A+ANA+KM(\/K+A)

< —(An41— An — 2K)A + KVA + KA%.
Let 0 < a < 3 be roots of a quadratic equation
Kz? — (A= Ay ~2K)z+ K =0.
If A(to) < B for some to < 0, then A(t) < B for tp <t < 0. Thus we

may assume that A(¢) = ||a(®)||%/||p(t)||> > B for t < 0.
From (2.6),

| =

lloll* < =Ansalloll* + Klllllloll + Kllo||* < —llo]|.

N =
U

t

Here v = An+1 — K — K//B.
Integrating from ¢ to 0, we obtain

0 < [lo(0)]]* < e [le(®)I*, t<0.

From the assumption ||o(t)]| is bounded and taking ¢t — —oc leads to a
contradiction.

REMARK. (1) We first observe that v > Ay4+1 — 2K > 0 and Theo-
rem 1 still holds for the solutions with ||e(*~Vtg(t)|| bounded for ¢ < 0.

(2) The method introduced here is new as far as we know and we
hope it could be extended to the more general nonlinearity.
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3. Inertial manifold

An inertial manifold which is positively invariant Lipschitz manifold
which attracts all solutions with an exponential rate, introduced by
Foias, Sell, and Temam in [2]. It has been constructed for a wide class
of partial differential equations, see [3] and [4] for details. But it is not
known whether there exists an inertial manifold for 2D Navier-Stokes
equations. The reason for this is that the spectral gap condition

Anvi1 — AN 2 Cy/ AN

does not hold for any N unless C is small. Henceforth a new existence
theory must be developed.

In the previous section, we have seen that the negatively bounded
solution (in the sense that e(*~1D¢||g(¢)|| bounded for ¢ < 0) is unique (if
exists). The main goal of this section is to prove an existence of such a
solution and to construct an inertial manifold by using those solutions.
It turns out that this existence proof is much concise and easy to follow
relative to the previously developed methods. Much more importantly,
the new method can be applied to an equation of the type

up = —Au+ Av + f(uvv)7
vy = —Av + cu + g(v),

where ¢ is any constant and f, g are suitable functions. We recall that
the above equation is very close to the transformed equations of 2D
Navier-Stokes equations. See [1] for details.

We first recall an existence result for a linear equation.

Basic LEMMA. Let f(t) be given in L®(—00,0;D(A™%)). Then
there exists a unique function ¢(t) which is continuous and bounded
from (—o0,0] into H and satisfies

dg

i —Aq + f(t).

Moreover if 0 € L>®(—00,0; H), then ¢(t) is continuous and bounded
from (—o0,0] into D(A%).
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Proof. The proof can be found in p.420 of [4].

We now introduce a weight function

A
w=w(t)=¢e" a= AN+ Av +2 N+

and a weighted Banach space

H=C,((—0,0;H) = {u +_sup w(®)]u(t)|] < oo}.

—o0<t<0

Define p(t) = w(t)p(t), q(t) = w(t)q(t). Then from (2.2), we get

(3.1) p: = —Ap +ap +w(t)PF(p +q),
(3.2) a: = —Aq+ aq+w(t)QF(p+ q).

Our strategy to find a negatively bounded solution is as follows;
Step 1: Given any po € H and an initial guess go(t) with sup_ ., ;<o w(?)
[lgo(t)]] <1, solve

(3.3) p: = —Ap +ap + w(t)PF(p + go(t))

with an initial data p(0) = p(0) = po.
Step 2: Solve

(3.4) a; = —Aq+aq+w)QF(p + q(t))

and define qi(t) = q(?).
Step 3: Prove that the mapping

o qo(t) — éql(t)

is a strict contraction in H.

In step 1, (3.3) is an ordinary differential equation and there exists
an unique global solution p(t) = p(¢; po, go(t)). In step 2, w(t)QF (p(t)+
qo(t)) € L*>(—00,0; H) and by applying Basic Lemma, one has a unique
solution q(t) € C((—o0,0]; H). It is also easy to see that ||q(¢)|| < 1 for
t < 0. Thus the mapping ® maps the unit ball in H into itself.

By arguing that ® is a strict contraction, one finds a negatively
bounded solution looking for.
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THEOREM 2. Assuming Ay;; — Ay > 3K, we find an N-dimensional
inertial manifold for (2.1).

Proof. Tt is enough to show that ® is a strict contraction. In fact
an inertial manifold is constructed by a finite dimensional graph of a
mapping from pg to ¢(0) as usual and it follows from the uniqueness of
negatively bounded solution that the mapping is well-defined and the
graph is invariant. The other properties can be proved by following the
standard argument given in (3] and [4].

Let, given py and go(t), we have solutions po(t) and qi(¢) of (3.3)
and (3.4) respectively with pg(0) = po. We now replace go(t) by ¢i1(t)
in (3.3) and (3.4) and let p;(t) and qz(t) be new solutions of replaced
equations with p;(0) = py. We define

p(t) = p1(t) = po(t), o(t) = qa(t) —a(t),

then p and o solve

(3.5) pt = —Ap+ap+ Po(t),
(3.6) oy = —Ac + ac + Q¢(t),
where

o(t) = w(t)(F(p1(t) + @1(t)) — F(po(t) + qo(t)))-
First of all,
oI < K/[lpl1? + [lull?,

for p = sup_,s<ow(®)|lq1(t) — qo(t)||. We multiply p to (3.5) and
integrate to obtain

= 2ol =~ +allol*+ < 6,0 >
> (1432 + alloll® — A (ol + lal?) ~ Sl

and thus d
el 2> 2_K 2
—1pl" = Bllpl] el

where 8 = —2\y + 2a — 2K. Integrating from ¢ to 0 and recalling
p(0) = 0, we have

(3.7) lolP < G



836 Zhong Bo Fang and Minkyu Kwak

We now multiply o to (3.6) and integrate to obtain

[ s

1
loll* = ~[lA%0]]* + allo]|*+ < ¢,0 >

1 K K
< —|l4zq|* + allol]? + 3(|IP||2 +pll?) + 5||0'||2-

1
2

=

t

Using (3.7), we find
d K
Zlloll’ < =@vi1 = 20 = K)llo]* + K(Z+ D

and

K 1
2<K(= 41 2
llo]]* < K( 4—)2AN+1_2a_hKu

B
K 2
R v — 2K
N+1— AN —
<||g||* from the assumption,

which completes the proof.
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