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FRAGMENTATION PROCESSES AND
STOCHASTIC SHATTERING TRANSITION

INTAE JEON

ABSTRACT. Shattering or disintegration of mass is a well known
phenomenon in fragmentation processes first introduced by Kol-
mogorov and Filippop and extensively studied by many physicists.
Though the mass is conserved in each break-up, the total mass de-
creases in finite time. We investigate this phenomenon in the n
particle system. In this system, shattering can be interpreted such
that, in uniformly bounded time on n, order n of mass is located
in order o(n) of clusters. It turns out that the tagged particle pro-
cesses associated with the systems are useful tools to analyze the
phenomenon. For the newly defined stochastic shattering based on
the above ideas, we derive far sharper conditions of fragmentation
kernels which guarantee the occurrence of such a phenomenon than
our previous work [9].

1. Introduction

Consider the dynamics of n particles in a closed system. If ¢ particles
are joined together to form a cluster, we call it an i-cluster. Each cluster
breaks up into small clusters after waiting an exponentially distributed
amount of time with parameter depending on the size of the cluster.
These fragmentation processes have many applications in physics, such
as polymer degradation and break-up of many objects including rocks,
liquid droplets, glass, etc [5, 6, 12]. The governing deterministic equation
studied by many physicists is
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where ¢(x,t) is the distribution of the particles of mass z, a(x) is the
break up rate of the z-cluster into smaller clusters, and b(z|z) is the
rate of creation of z-clusters conditional on the fragmentation of the
x-cluster.

Numerous exact solutions and interesting phenomena have been stud-
ied by many physicists independently of mathematicians for some time
[5, 6, 14, 15]. However, the beginning of the study of this fragmentation
process dates back to Kolmogorov([11l]. Kolmogorov’s result was soon
generalized by Filippov[8] and recently by Bertoin among others [3, 4].
They consider a stochastic model of the following type. Each particle,
say e, of mass u(e) (u(e) : positive real number) waits an exponential
amount of time with parameter P(u(e)) and splits into at most count-
able number of smaller particles ex, k =1,2,....

One of the most interesting phenomena in the fragmentation process
is the shattering transition (or disintegration of mass) which is consid-
ered a counterpart of the well known gelation phenomena in the coag-
ulation process. Though no mass is subtracted from the system during
the break-up processes, for some kernels, the total mass [ zc(z,t)dz de-
creases in finite time. This can be explained as due to the decomposition
of the mass into an infinite number of particles of zero mass. Indeed,
this was first introduced by Filippov, and he gave a necessary and suf-
ficient condition for shattering under mild assumptions of the variables
of the model. On the other hand, many physicists have found explicit
solutions of (1) and for the case a(z) = x® with special form of b(z|z),
they have shown that shattering occurs.

Based on these results, it is an interesting task to study the finite
particle system of fragmentation introduced at the beginning of this
section. It can be thought of as a discrete stochastic approximation
of (1) or Kolmogorov and Fillipov’s stochastic model, after letting the
mass size of each particle be 1/n. Moreover, it has its own advantages.
Indeed, we can consider the case that higher cluster has a higher rate of
break-up. Such a case can be found in the break up of glass or polymer,
etc. It is also interesting that the largest cluster in the zero-range process
of n particles on n sites shows such a dynamic if initially there is an n
cluster in one site and the waiting time parameter g(-) is an increasing
function of the size of the cluster. See Jeon et al.[10] for details. Note
that, to the best of our knowledge, previous authors have never dealt
with shattering transiton in this situation.

We assume that initially there is a single n-cluster. Shattering, then,
can be characterized by saying that the time in which order n of mass
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(each particle has mass 1) is located in order o(n) of clusters is uniformly
bounded. See Jeon[9]. Let X*(i) represent the number of i-clusters at
time t (see section 2 for the precise definition). Then, more precisely,
we say stochastic shattering occurs if there exists a function ¢(n) such
that ¢(n) = o(n) and exist tg < 00,8 > 0 satisfying

[6(n)]
hnnl)lng{ ; iXy, (1) > 5} > 0.
Notice that the occurrence of shattering is a matter of the speed of the
fragmentation process, and our idea is to estimate the speed by consid-
ering the tagged particle processes associated with the system, which
gives a sharper results than our previous work [9]. The independence
of the jump rates of the tagged particle in the n particle process makes
the analysis possible. The speed of the tagged particle process can be
carried out using a comparison with other simple processes. These types
of stochastic dominance are justified by coupling arguments [13].

In this paper we mainly assume that clusters break up into only two
small clusters, i.e., binary fragmentation. Multiple fragmentation is just
a simple generalization of this model, and our method can be applied for
it without big changes. (See the Remark after the proof of Theorem 2.)

2. Stochastic fragmentation processes and main theorems

In this section, we construct a system of finite state Markov chains
associated with the rate constants F"(3,j), i+j < n, n > 1. In the nth
Markov chain, there are n particles which form clusters. These clusters
fragment at rates determined by F™(7,j) to make smaller clusters (any
(i + j)-cluster breaks up into i-cluster and j-cluster with rate F™ (i, j)).
After a suitable scaling, the Markov chains can be thought of as discrete,
stochastic approximations to solutions of the fragmentation equation (1)

[1].
NOTATION.
(a) Let N={0,1,2,...}, Nt ={1,2,3,...}.
(b) Let By, ={n:ne N, Y02 kn(k) = n}.
(c) [-] represents the largest integer function.
(d) Let {e;}22, be the basis of RN, ie., &, = (0,0,...,0,1,0,0,...),
where 1 is located in the ith coordinate.
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REMARK. Note that any 5 € E,, can be expressed by (n(1),7(2),. ..,
n(n)), since all n(i) = 0 if ¢ > n, or using the basis defined on the
Notation (d), n = >_i, n(i)e;- Here, e; means that there is an i-cluster.
The space E,, is indeed the partition of n, and the process X{* which
will be defined on this space can be considered as a random partition
process.

Let {F™(%,7)}i+j<n,n>1 be a nonnegative sequence such that F"(, j)
=0if j <. Fori <j, let AY, = (e;+e; —e;;). Let X7* be the Markov
process on E,, with generator

(2) Lifm) = Y (f(n+AF) — fm)F"(,5)n( + j)
i+j<n
for any bounded function defined on E,,.
We may describe the dynamics as follows:
The process waits at state n for an exponentially distributed amount of
time with parameter

XM m) = > FR(6,5)n(i + 5),
t+j<n
then jumps to state n + A7 (or an (i + j)-cluster fragments to form an
i and a j cluster) with probability
F" (i, ))n(i + )
A™(n)

Since, for each n, the state space consists of finitely many points,
ie., |E,| < oo, there is a unique well defined pure jump process, say
X[ on E, for each n. We will call this sequence of processes {X['}32
the system of the stochastic fragmentation processes, and we will denote
it simply by X*. In general, we assume that the initial configuration
X3 =en € E,, ie., initially, there is a single n cluster.

In this system of processes, we can define the stochastic shattering

phenomenon using the idea that in finite time at least én, for some § > 0,
amount of mass is located in the o(n) order of clusters. More precisely,

DEeFINITION 1. For given fragmentation kernels F"(i, j), we say sto-
chastic shattering occurs if there exists a function ¢(n) such that ¢(n) =
o(n) and ty < 0o, d > 0, satisfying

(#(n)]
o o
hnrr_l)lng{ E_l iXg (i) > 6n} > 0.
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As mentioned in section 1, this finite particle system can be thought
of as the discrete approximation of (1). Indeed, let E, be the space
obtained from F, by normalizing the coordinates by n, e.g., the kth
coordinate becomes k/n-coordinate. That is,

Enz{fn<z'>e,~/n=neEn},

i=1

where {e;/,}’s are the new basis and e, ,, means that there is an (i/n)-
cluster. Now, let us define the system of the scaled fragmentation process
Y on E, with generator

® = Y (A - o) )
i+i<n

for any bounded function defined on E,, where n e E,, A’f’j = €j/m t+
€j/n — €(itj)/m a0d F(n) = Elgign—l F™(i,n —1d).

In Y;", a k-cluster becomes a k/n-cluster, and the jump rate F"(k)
becomes F™(k)/F™(n) so that the n-cluster is normalized to a 1-cluster
and the fragmentation rate of this 1-cluster is normalized to 1. If F™ (3, 5)
are chosen so that

S F0)/Fr(n) — afo)

i+j<k
and

z+e
> PGR-E® - [ bl

i—en<j<iten

where = lim, koo /1, 2z = lim, ;o0 i/n, and a(x) and b(z|z) are
defined in (1). Then Y;" is thought to be a discrete stochastic approxi-
mation of (1). Therefore, the mass located on the o(n) cluster becomes
zero in the limit. However, the rigorous proof of the convergence does
not seem to be established. See [1] for physical derivation.

From now on, to make the notation simple, we will omit the largest
integer symbol [] if there is no difference in calculating the asymptotics.
That is, if there is a number which is not in an integer form but should be,
then notice that [-] is omitted. For example, in the following Condition
1, ek means [ek] and k/2 is in fact [k/2].
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CONDITION 1. There exist 0 < € < 1/2 and 0 < v < 1 such that

k/2

Y ) 2

l=¢k

for all k, where F™(k) = 3", ;<) F™(i,k — ).

REMARK. This assumption implies that if a k-cluster breaks up,
then with positive probability it becomes two clusters of size bigger
than or equal to ek. Therefore, this corresponds to the condition of
fem/ 2 b(z|z)dz > 7 in (1). This condition excludes the dust evaporation
phenomena. For example, if F™(i, k —i) = f(k)6;, where 0% = 1ifa=b
and 0 if a # b (i.e., Becker-Déring type fragmentation [2]) it does not
satisfy Condition 1. In this case, any cluster emits only a single particle,
which is invisible in the system (o(n) order). Consequently, for some
F™(k) (e.g., F™*(k) = k*,a > 1), a huge cluster, even though we can not
detect any fragmentation, reduces its mass as time passes. Obviously,
there is no deterministic counterpart of this phenomenon.

Let Iy be the first number which makes e < 1.

THEOREM 1. Suppose F"™(k) is decreasing and

where A = 1 — €. Then under Condition 1 stochastic shattering occurs.

In the deterministic analogue, the n-cluster of the stochastic model
is normalized to a 1l-cluster. Obviously, k-cluster corresponds to k/n-
cluster in the deterministic case. Therefore, a(z) = 1/2“ in (1) matches
F™(k) = (n/k)® in the stochastic model. In this case, we have:

CoroLLARY 1. If F*(k) = (n/k)*, o > 0, then under Condition 1
stochastic shattering occurs.

More detailed picture can be given by:

COROLLARY 2. If F*(k) = (log(n/k))* + 1, > 1, then under Con-
dition 1 stochastic shattering occurs.

Now consider a condition which is stronger than Condition 1:
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CONDITION 2. There exists € > 0 such that

ck
D Fp(i) =0
i=1

for all k.

THEOREM 2. Suppose F"(k) is decreasing and

RS =N |
tminf > ey =

then under Condition 2 stochastic shattering does not occur.

COROLLARY 3. If F™(k) = ()%, o < 0, then under Condition 2
stochastic shattering does not occur.

Also we have:

COROLLARY 4. If F™(k) = (log(%))* + 1, a < 1, then under Condi-
tion 2 stochastic shattering does not occur.

Note that F™ does not need to be a decreasing function. For example:

THEOREM 3. If F™(k) = k*, a > 0, then under Condition 1 stochas-
tic shattering occurs.

3. Tagged particle processes

Consider the tagged particle process ZJ* = (X', Y{") defined on FE,, x
N, where Y;" is the position of the tagged particle. The process waits
at state (n,k) for an exponentially distributed amount of time with
parameter

Nt(n) = Y F"(i,j)m(i+5),

i+j<n
then jumps to state (n"7,k) (09 =n+ e;r; — e; — ;) with probability
Fr(i, j)ni + j)
At(m)
if ¢ + j # k, to state (n*7, k) with probability
F(i,5)(n(i +4) — 1)
A () ’




862 Intae Jeon
if i + j = k, to state (n»7,{) with probability

iF™ (4, §)n(i + 5)
kAn(n)

if i + j = k, to state (n*, j) with probability

JF™ (3, 5)n( + 5)
kA" (n)

We can express the process formally by the corresponding generator
L% defined on the set of bounded functions on E,, x N such that

L3f((nk) = Y (f((0™,k) = f((n, k) F™ (3, 5)m(i + 4)
i+j<n,itji#tk
4) + > (F(, k) = F((n, k) F™ (6, 5)(n(k) = 1)
i+j=k

k-1
+ 2 (F(0™*%0) = F((n ) F"(z k—i).

Note that this L% satisfies the positive maximum principle in Theorem
2.2 in page 165 of [7]. Therefore, by the Theorems 4.1 and 5.4 in the
same chapter of [7] about martingale problem, there is unique Markov
process Z;* such that, for any bounded function f on E,, x N,

f(zp) - /0 G f(Z7)ds

is a martingale.

Though the formal definition is complicated, observe that the Y,
does not depend on the state of X;*. Indeed, Y;" is a time homogeneous
Markov chain with transition probability

P{Yin =1 Y =k} = M ;h+o(h),
where AL, = F (i) F™(k)i/k.
3. Proofs of main theorems

We begin by proving the following Lemma.
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LEMMA 1. For X' and Y;* given above, we have
. n .
(5) BX{() = P =3J).
Proof. For the n particles in the initially given n-cluster, we give an
order, say 1, 2, ..., n. Let Ytn’k be the location of kth particle at time

t. Then Y;"’k are identically distributed and have the same distribution
with Y*. For any 1 < j < n,

FX7G) =) 1 ().
k=1
Therefore,

EjXP(j) = EY 1) =Y P =) = nP(Y) =),
k=1 k=1

hence we have (5).

Proof of Theorem 1. Let A =1 — € and let
it =y FH (N ).
Consider the pure birth process Z}* satisfying
P(Zf =141] 20 =1} = it +ofh).

Then we can prove that the process Z" is stochastically dominated by Y!
in the sense that before Z;* hits the state lo, Y, hits a state ¢ < 1/X. This
will be done by showing that there exists a coupling. See Lindvall[13]
for details about coupling methods. Let AY = {n} and

Al={ieN:Nn<i<MN'n}

for 1 =1,2,...,lp, where [ is the smallest number which makes An <
¢(n). Note that F*(m)F™(k) > ulif m € A" Let D = {1,2,... ,n}x
{0,1,... ,lp} and consider the coupled process C; defined on D, with
jump rates

(m, 1) with rate FJ*(m)F"(k) if m € A"\ A"F?,
(k,1) = < (m,1) with rate FI(m)F"(k) — u} if m € A",
(m,l+1)  with rate u' if m € A%
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By the construction, we can write C; = (Y;*,Z*) and this coupling
shows the dominance as desired. It only remains to show that under the
condition the process Z}* hits Iy in finite time uniformly on n. Indeed,
define J,, successively by J; =0, and for [ > 1,

JP =inf{t > J, : 20 £ Z7)

and
T, =inf{t > T;—1 | Z7* #i}.

Then Jl% =T1—|—-T2+"'-|~ﬂo and

SO T R
EJY=S —=2S" <M
UR) =2 3 =5 2 T =

for some constant M which does not depend on n. Let ty = 3M, then

OOI[\')

1
P{Y}O = A} > P{J}; <t} =1-P{Jj Sto}
From Lemma 1, we have

2
Z EiXy (i) > 3"

i<1/A
Therefore,
. . 1 1
P{ Z i X4 (1) 2 5”} > 3’
i<1/A
since, if not,
n( 1 12 5
E Y iX[(6) <nz 3133

i<1/A

and contradiction follows. Therefore by the choice of ¢(n) = 1/A and
0 = 1/3 in the Definition 1, we are done.

Proof of Corollary 1. For F"(k) = (n/k)*, a > 0, we have

3
£~
3
Mg
uMg
%
A
=
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for some M independent of n. Therefore F"(k) meets the conditions of
Theorem 1.

Proof of Corollary 2. For F™(k) = (log(n/k))* + 1, a > 10, we have
lo ;
Fr(Xn)

l
(log %)0‘ +1

1
—_— < M
l2(—logA\)+1

IA

1=0

Mz 102

N
I
o

for some M independent of n. Therefore F"(k) meets the conditions of
Theorem 1.

Proof of Theorem 2. For any given ¢(n) = o(n), let lp be the smallest
integer satisfying e’on < ¢(n). Note that Iy — oo and n — oo, since g >
(log ¢(n) — logn}/loge. Consider the pure birth process Z* satisfying

P{Z{, =1+1|2Z=1} = p’h+o(h),

where p' = F"(e'n). Note that

arz oY FR(m)Fr (k).

meAl-l——l

Now we can prove that the process Z* stochastically dominates Y;" in
the sense that Z7* hits the state lg, before Y,* hits the state 1. Again,
this will be done by showing that there exists a coupling. For same A°,

Al and D, consider the coupled process C; defined on D, with jump
rates

(m, 1) with rate Fit(m)F"(k) if m e Ab\ AT,
(k, 1) — (m,1+1)  with rate FP'(m)F™(k) if m € A",
(k,1+1)  withrate uf — > F{'(m)F"(k).

meAltL

We can also write Cy = (Y, Z}') and this coupling shows the dominance
as desired.

Now let us show that under the condition the process Z[* hits [y in
finite time uniformly on n. Indeed, define J, successively by Jo = 0,
and for [ > 1,

Jt=inf{t > J',: Z # Z]'}
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and

Then Ji! =T1 +To + -+ +Tj, and

n(fien) - freen i f
k=1 k=1 1c=11+”’c 1::114‘1/“’c

Since the last term tends to infinity as n tends to 0, for any ¢y and € > 0
there exists N so that for any n > N,

P{J]; <to} <e.

Consequently, the conditions of Definition 1 is not fulfilled.

REMARK. The above proofs do not depend on the fact that the frag-
mentation is binary. Therefore, we can apply the same method for the
multiple fragmentation.

Proofs of Corollaries 8 and 4. It is clear by the same way of the
proofs of Corollaries 1 and 2.

Proof of Theorem 8. In the proof of Theorem 1, the only difference is
the estimation of jump rates on each block. By the similar calculation
of Corollary 1, we are done.
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