Journal of Mechanical Science and Technology (KSME Int. J.), Vol 19, No. 12, pp. 2187~ 2196, 2005 2187

A Finite Thin Circular Beam Element for In-Plane Vibration
Analysis of Curved Beams

Chang-Boo Kim*, Jung-Woe Park, Sehee Kim, Chongdu Che
Department of Mechanical Engineering, Inha University,
253, Yonghyun-Dong, Nam~-Ku, Incheon 402-751, Korea

In this paper, the stiffness and the mass matrices for the in-plane motion of a thin circular
beam element are derived respectively from the strain energy and the kinetic energy by using
the natural shape functions of the exact in-plane displacements which are obtained from an
integration of the differential equations of a thin circular beam element in static equilibrium.
The matrices are formulated in the local polar coordinate system and in the global Cartesian
coordinate system with the effects of shear deformation and rotary inertia. Some numerical
examples are performed to verify the element formulation and its analysis capability. The com-
parison of the FEM results with the theoretical ones shows that the element can describe quite
efficiently and accurately the in-plane motion of thin circular beams. The stiffness and the mass
matrices with respect to the coefficient vector of shape functions are presented in appendix to be
utilized directly in applications without any numerical integration for their formulation.
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1. Introduction

The in-plane static or vibration analysis of
curved beams is quite complex due to the presence
of bending-extension coupling and the effects of
shear deformation and rotary inertia. Neglecting
these effects may lead to inaccuracies of the an-
alysis especially when the ratio of radial thickness
to radius of curvature of a curved beam is not
small (thick circular beam), and for vibration
problem, natural frequencies of higher modes may
be erroneous even though the ratio is very small
(thin circular beam) .

So far, many papers studying the finite curved
beam elements for the in—plane static or vibration
analysis of non-straight beams have been report-
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ed. The total extent of the works in this field is
now too great to be reviewed in detail, but those
papers that set the present work in context are
briefly summarized in the following.

Davis et al.(1972) presented the shape func-
tions of a curved beam element that are the exact
in-plane displacements obtained from an integra-
tion of the differential equations of an infini-
tesimal element in static equilibrium. The stiffness
and mass matrices were derived from the force-
displacement relations and the kinetic energy
equations, respectively. The matrices are formed
for the in-plane motion of either a thick curved
beam with the effects of shear deformation and
rotary inertia or a thin curved beam without those
effects. The matrices are formulated in the local
straight-beam (Cartesian) coordinate system ra-
ther than in the local curvilinear (polar) coordi-
nate system, and thus a transformation of the
matrices for the local coordinate system to the
one for the common global coordinate system is
required before its are assembled even though the
radius of curvature for the entire curved beam is
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constant.

Ashwell et al.(1971) studied the static applica-
tion of cylindrical shell element and compared
the results with those obtained by using a new
element based on simple strain function. A finite
element formulation based on natural shape func-
tion was also presented but the effect of shear
deformation was not considered. Yamada and
Ezawa (1977) proposed a straightforward criteri-
on to warrant the displacement functions being
used in the finite element approximation of circu-
lar arches. The criterion was established by stud-
ying the natural shape functions of the exact
solutions of the deformed shape of the circular
arch element. Meck (1980) developed a finite ele-
ment solution for a thin curved beam by consi-
dering or neglecting the extensional deformation
and observed that excellent results could be ob-
tained by using polynomial based displacement
functions.

Prathap and Babu (1986) derived a 3-node
curved beam element with shear deformation, bas-
ed on independent iso-parametric interpolations
and field consistency principles. This beam ele-
ment suffered from membrane locking with the
increase in the ratio of element length to thick-
ness due to the inconsistency of membrane strain,
while the inconsistency in shear strain did not
lead shear locking, but degraded the performance
of the element and resulted in severe force oscil-
lations. Guimaraes and Heppler (1992) inves-
tigated a thin beam element based on trigono-
metric functions for its ability to recover incre-
mental rigid body motions. They compared the
performance of three different models. Choi and
Lim (1993) developed two curved beam elements,
which are the CSCC and the CSLC elements
based on Timoshenko beam theory and curvi-
linear coordinate system, modified from the con-
ventional strain based shape function element.
Lee and Sin (1994) presented the formulation of
a 3-node curved beam element based on curva-
ture.

Sabir et al.(1994) develbped a strain based
curved beam element by using Timoshenko deep
beam formulation in the curvilinear coordinate
system. A linear variation of bending curvature,
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and a constant extensional as well as shear strains
were chosen. Krishnan and Suresh (1998) ob-
tained the effects of shear deformation on deflec-
tion and shear deformation together with rotary
inertia on the natural frequencies of curved beams
by using a 2-node cubic-linear curved beam ele-
ment having 4 degrees of freedom per node in
local Cartesian coordinate system. Kim and Kang
(2003) presented a new highly accurate two-di-
mensional curved composite beam element based
on the Hellinger-Reissner variational principle
and classical lamination theory by employing
consistent stress parameters corresponding to cu-
bic displacement polynomials with additional
nodeless degrees.

In the past four decades, some novel ap-
proaches for curved beam elements have been
presented, but they are not widely adopted in the
practical applications because of their complexi-
ty. To avoid the complex formulations by the
existing approaches, this paper is concerned about
development of a thin circular beam element, i.e.
a curved beam element of which radial thickness
is very small as compared with radius of curva-
ture and in which the effect of variation in cur-
vature across the cross section is neglected. In this
paper, the stiffness matrix and mass matrix for the
in-plane motions of a thin circular beam element
are derived respectively from the strain energy
and the kinetic energy, in different manner of the
works by Davis et al. (1972), by using the natural
shape functions of the exact in-plane displace-
ments which are obtained from an integration of
the differential equations of a thin circular beam
element in static equilibrium. The matrices are
formulated in the local polar coordinate system
with the effects of shear deformation and rotary
inertia. If necessary, the matrices can be trans-
formed without difficulties for the global Car-
tesian coordinate system. Some numerical exam-
ples are peformed to verify the element formula-
tion and its analysis capability. The results ob-
tained by using FEM are compared with the
theoretical ones to examine the convergence and
accuracy of the element. The stiffness and the
mass matrices with respect to the coefficient vec-
tor of shape functions are presented in appendix
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to be utilized directly in applications without any
numerical integration for their formulation.

2. Thin Circular Beam Element

2.1 In-plane deformations

As shown in Fig. 1, the global Cartesian coor-
dinate system of a circular beam element is Oxyz.
O is the center of curvature of the element. The
cross section perpendicular to the circumferential
direction of the element is symmetric with respect
to the £—7 plane, and its area is constant. The
radius of the centroidal line passing through the
center of cross section is @. A half of subtended
angle of the element is ¢={(6— 6) /2. The nodes
of the element, C; and C; are on the centroidal
line.

When we consider only the in-plane deforma-
tions with respect to the x — v plane of a circular
beam, the displacement of the center of cross
section, C, at an angular position 6 has radial
component, #, and circumferential component,
uy with respect to a local polar coordinate sys-
tem, C£€7¢. The rotation of the cross section at C
has axial component, ¢¢ which is supposed very
small.

The shear strain, 7ye, extensional strain, &4, and
bending curvature, y; at C of a circular beam
are as

Ug

Fig. 1 In-plane displacements of a circular beam

?’e:¢z+%<_un+ue,a> (1a)
Gn:%(ue‘Fun,e) (1b)
X =L¢ (1c)

4 a £,6

where ( ), is a partial differential with respect
to circumferential coordinate §.

When the radial thickness is very small as com-
pared with the radius of centroidal line and the
effect of variation in curvature across the cross
section is neglected, the beam is called thin.

The internal shear force, NN, extensional force,
N,, and bending moment, M; at C of the thin
circular beam are as

N:e=K:GAv: (2a)
Nn - EAeay (2b>
M=FEly; (2¢)

where A, I, and K, are respectively the area,
the area moment of inertia about {-axis, and the
shear coefficient of the cross section (Cowper,
1966) . E is the Young’s modulus of the material.
G is the shear modulus which is expressed as
G=E/2(1+v) with the Poisson ratio, v.

The in-plane strain energy of the thin circular
beam element is expressed as
1 /%

1/1.__

=5, (K:GAV:+EA&+ELx}) add (3)

The in-plane kinetic energy of the thin circular
beam element is expressed as

Tf:%/gez<ﬂAu%+pAu%+p1;¢%> adf (4

where o is the density of the material. (*) is 2
partial differential with respect to time, £.

2.2 Shape functions for in-plane deforma-
tions

In-plane forces and moments are applied on
the cross sections at nodes, Ci and C; of a cir-
cular beam element, and the element is in equi-
librium.

The internal shear force, extensional force, and
bending moment on the cross section at C can
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be expressed with the internal shear force, Ngo,
extensional force, Ny, and bending moment, My
on the mid cross section at ¢=0 as

NezNgoc¢+NnoS¢ (Sa)
N71=_N5-08¢+N170C¢ (5b>
M§=M§o+quo+aNgoS¢—dNr;oC¢ (SC)

where s¢=sin ¢, cd=cos ¢
p=0—(&+6)/2 (6)

By substituting Eq. (5) into Eq. (2) the shear
strain, extensional strain, and bending curvature
at C can be expressed with the internal shear
force, extensional force, and bending moment on
the mid cross section as

ye=ae- (Asch+ Assd) (7a)
er=aty— (— Assp+ Ascd) (7b)
K=z (Act Assd— Ascd) (7¢)

where
A= (£) (Mot al) (32)
=< z )dNeo (8b)
Ai=( 51 ) alV (8¢)
ae=% (9a)
“”ZEJZZZ (9b)

If a,=0, then the effect of shear deformation is
neglected, i.e. y.=0.

The radial displacement, circumferential dis-
placement, and axial rotation of the cross section
at C, which are solutions of a system of dif-
ferential equations obtained by substituting Eq.
(7) into Eq. (1), are expressed in terms of ¢ as

Chang-Boo Kim, Jung-Woo Park, Sehee Kim and Chongdu Cho

ue=Azch+ Assp— A1 —c9)

—As(sp—essp—espcd) + Asesdsd (10)
u:,—_—Al"AzS¢+A3€¢+A4(¢_S¢) (10b)
+A;(1—cop—espsd) _A6(84S¢_83¢C¢)
b= { At Asp+ Asl1—cg) —Assg}  (100)

where Ai/a, As and As are the constants of
integration of the system of differential equations,
and are respectively the rigid body rotation about
the center of curvature in the axial direction, the
rigid body displacement of the center of curvature
in the radial direction, and the rigid body dis-
placement of the center of curvature in the cir-
cumferential direction at the mid cross section.

(1+a:+a,) (11a)

Ni»—-

es——= (1+a:—an) (11b)

N|>—-‘

The static deformations represented by Eq. (10)
are used as the shape functions for the in-plane
deformations of a thin circular beam element.
they are composed of the rigid body modes asso-
ciated with Ai/a, Az and As and the flexible
modes associated with As, As, and As. The flex-
ible modes are null at ¢=0.

The in-plane displacements and rotations at
nodes C; and C; can be expressed as

{vi}=la]{A} (12)
where
{vi}=(ua un da us un ¢’ (13a)
{A}= Al Az As A4 As Ae) (13b)
[0 cf —s§ ~14ch (I-esp-efc)  esfsd
L osp of ~¢tsp 1-ch-afsd  asp-aded
a0 0 ~¢la {-ch)a sf/a
= 0 of sp —1ted —(I-a)sftede)  efsf (130)
I=sp of d=sp  I-cf-afsy —asftedo)
a0 0 da  l-chle  -sla

The coefficient vector of shape functions, { A}
then can be expressed in terms of the nodal dis-
placement vector with respect to the local polar
coordinate system, {v;}, as
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{At=[a:] s} (14)

The relationship between the nodal displacement
vector with respect to the local polar coordinate
system and the nodal displacement vector with
respect to the global Cartesian coordinate system,
{ &1}, is given by

{v}=[T: {01} (15)
where

{01}=(un tsr b1 Uxz Uy2 P2) T (16a)

[ ¢c6 s0 0 0 0]

—séh ch 0 0O 00

0 01 0 00
[T:]= 0 00 cbh s (16b)

0 0 0-—-sbkctkho

. 0 00 0 0 1]

2.3 In-plane stiffness matrix

By substituting Eq. (7) into Eq. (3) the in-
plane strain energy is expressed in terms of the
coefficient vector of shape functions as

Vi=5 {AYK](A) (17

where [K,] is the in-plane stiffness matrix with
respect to { A} of the thin circular beam element.
The elements of the symmetric matrix [Kj] is
detailed in Appendix.

By substituting Eq. (14) into Eq. (17) the in-
plane deformation energy is expressed in terms of
the nodal displacement vector with respect to the
local polar coordinate system as

Vimy (o) LK1 {wr) (18)

where [K;] is the in-plane stiffness matrix with
respect to { v7} of the thin circular beam element
as

(Ki]=la:] " [Kd]la:]™ (19)

If necessary, the in-plane stiffness matrix for the
local polar coordinate system can be transformed
for the global Cartesian coordinate system as
follows,

[K]=[T: )" K][T) (20)
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24 In-plane mass matrix

By substituting Eq. (10) into Eq. (4) the in-
plane kinetic energy is expressed in terms of the
coefficient vector of shape functions as

Ti=3{ A} M A} (1)

where [M,] is the in-plane mass matrix with
respect to { A} of the thin circular beam element.
The elements of the symmetric matrix { My} is
detailed in Appendix.

_ ol
M pAa2

(22)

If =0, then the effect of rotary inertia is ne-
glected, ie. ply=0.

By substituting Eq. (14) into Eq. (21) the in-
plane kinetic energy is expressed in terms of the
nodal displacement vector with respect to the
local polar coordinate system as

Tr=-{o:y (M) (1) (23)

where [M;] is the in-plane mass matrix with
respect to { vr} of the thin circular beam element
as

(M]=[a:]"[Mulla:]™ (24)

If necessary, the in-plane mass matrix for the
local polar coordinate system can be transformed
for the global Cartesian coordinate system as
follows,

(MA=[T]"[M:][T:] (25)

2.5 1In-plane internal forces

By substituting Eq. (7) into Eq. (2) or from
Egs. (5) and (8) the internal shear force, exten-
sional force, and bending moment on the cross
section at C can be expressed in terms of the
coefficients of shape functions as

Ne=(E2) (Ascg + Aosd) (262)
a
Nn=< Ef > (— Assp+ Ascd) (26b)
a
Me=(2E) (A Assp—Ascd) (260)
a
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3. Numerical Examples

Three problems are selected as numerical ex-
amples: 1) linear static analysis for a pinched
ring, 2) free vibration analysis for a free ring and
3) free vibration analysis for a circular arc.

Throughout the numerical tests, the values of
the material and geometric properties of the rings
with rectangular cross section are chosen as fol-
lows for the brevity of calculation, unless spec-
ified otherwise.

E=200 GPa, v=0.25, p=7830kg/m® a=1m
A=6X10"m?, [;=5%X10"° m*, K.=0.847

3.1 Linear static analysis for a pinched ring

A pinched ring, in which the central loads of
magnitude 2P are applied at the top and the
bottom, is modelled by a quarter ring with the
boundary conditions at the two ends as shown in
the Fig. 2.

The displacements due to the central load can
be obtained analytically from Eqs. (5), (8) and
(10) by considering the geometric and natural
boundary conditions at the two ends. The radial
displacement, #;; at the end #=0 and the radial
displacement, 2. at the end 0=7x/2 are

Ll e
"

{J

PN

x [OX9XO]
¢ /1177

Fig. 2 A quarter ring model of a pinched ring
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Table 1 Radial displacements per unit load of a
pinched ring

a/5=f=0 a/5=0
uer/ P (m/N) 1.3743x 1077 1.3620% 1077
seo/ P (m/N) | —1.5136X1077 | —1.4943X 1077

* @.=0 . neglecting the effect of shear deformation

w=(£5) (5

u52=<fa}§-> {%—% (1+a:+ay) } P (27)

; <1_a5+a1})}P (273)

The above theoretical results are the same as the

- ones obtained from using Castigliano’s theorem

by Lee and Sin (1994).

Table 1 summarizes the analytical solutions
for the radial displacements per unit load of the
pinched ring in the cases of considering or ne-
glecting the effect of shear deformation.

The same results as in Table 1 were obtained
by using FEM and modelling the quater ring
with only one, two or 16 thin circular beam ele-
ments because the shape functions of the element
presented in this paper are exact in statics.

3.2 Free vibration analysis for a free ring

The in-plane displacements of a ring which is
freely vibrating in a mode having # nodal diame-
ters with a frequency of @ will take the forms

we={Usc cos n8+ Usssin n@) e™*  (28a)
tty="{Unc cos n0+ Uyssin nd) e®*  (28b)
¢e= (Dg cos nh+ O sin nb) e™  (28¢c)

Substituting Eq. (28) into Eq. (3) and Eq. (4),
integrating around the ring, and applying La-
grange’s equations give the following equations

[Kric— &*Mic{ Ui }={0} for n=0  (29a)
[Kia— &?Mia){ Uia}={0} for n=1 (29b)
where
4= { g.ij} (30a)
| M O
IA"‘|: 0 MIC] (30b)
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Table 2 Convergency of natural frequencies of the in-plane vibration of a ring
Number of nodal Theory T FEM (Hz) /Error (%)
diameters (Hz) 16 elements 32 elements 48 elements 64 elements
2 61.891 61.902/0.018 61.893/0.003 61.892/0.001 61.891/0.001
3 173.64 173.90/0.151 173.68/0.025 173.66/0.010 173.65/0.005
4 329.30 331.10/0.548 329.61/0.093 329.42/0.037 329.37/0.020
5 525.35 532.56/1.372 526.60/0.238 525.85/0.095 525.62/0.051
6 758.46 779.44/2.766 762.22/0.495 759.97/0.199 759.28/0.108
0 804.37 ‘ 834.35/3.727 809.16/0.595 806.26/0.235 805.38/0.126
7 r1025.3 1073.6/4.715 1034.5/0.897 1029.0/0.362 1027.3/0.196
1 \ 1137.1 1185.7/4.274 1145.6/0.754 1140.5/0.306 1139.0/0.166
KM:{K}C ‘—Km-t (300) The above theoretical results are similar as the
Kis Kic ones obtained by the previous works (Rao and
Ure=(Usc Upc @) " (30d) Sundararajan, 1969 ; Kirkhope, 1977).
In order to show the convergence of the thin
Uis=(Uss Uns @ss)" (30¢) circular beam element presented in this paper, the
10 0 natural frequencies of the in-plane vibration of a
Mic=npAa|01 0 (30f) free ring were computed by using FEM, model-
00 wa ling the complete ring with 16, 32, 48, or 64
So+ sent? 0 0 elements, and considering all the effects of shear
Kic= KEJ‘ 0 syuP+se —sea |(30g) deformation and rotary inertia. In Table 2 the
a 0 —Sea AN+ sed? lowest eight natural frequencies of the flexible
modes computed by using FEM are presented
0 —SpB— SN Sean . .
K= 7rE3]g syntsent 0 0 (300) and compar.ed with the theore?lcal values com-
a —sean 0 0 puted by using Eq. (29). The first one mode for
7n=0 is rotational rigid body mode and the first
K.GA two modes for #=1 are translational rigid body
Sé:f‘m‘i (31a) modes.
EAZ Table 2 shows that the natural frequencies
7= El; (31b) computed by using FEM converge rapidly from

When the effect of shear deformation is neglect-
ed, by substitution of Eq. (28) into Eq. (1a) and
letting the shear strain to zero, the constraint
equations for zero shear strain are obtained as
@gc:

(Use—=nUss) (32a)

Q=

Q=" (Us+nUs) (32b)

1
a
For n=1, there exist two orthogonal modes of
which the natural frequencies are same, and the
nodal diameters of one mode are rotated by /2
7 from the nodal diameters of the other.

above to the theoretical values with increasing
number of elements. The percentage errors in the
natural frequencies increase with the number of
nodal diameters and the order of frequencies.

In order to know the effects of shear deforma-
tion and rotary inertia on the natural frequencies
of the in—plane vibration of a free ring, the natu-
ral frequencies were computed by using FEM,
modelling the complete ring with 80 elements,
and considering the effects of shear deformation
and rotary inertia. In Table 3 the lowest some
natural frequencies of the flexible modes com-
puted by using FEM are presented and compared
with the theoretical values computed by using
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Table 3 Comparison of natural frequencies of the in-plane vibration of a ring
Number of nodal @ +0, 0 a0, =0 ae=0, th+0
diameters Theory FEM (Hz)/ Theory FEM (Hz)/ Theory FEM (Hz)/
(Hz) Error (%) (Hz) Error (%) (Hz) Error (%)
2 61.891 61.891,/0.000 61.936 61.937/0.000 62.193 62.193/0.000
3 173.64 173.64/0.003 174.08 174.08/0.003 175.52 175.52/0.000
4 329.30 329.34/0.013 330.97 331.01/0.013 335.56 335.57/0.001
5 525.25 525.52/0.032 529.61 529.79/0.033 540.67 540.68/0.002
6 758.46 758.98/0.067 767.21 767.75/0.070 789.60 789.63/0.004
0 804.37 805.00/0.079 804.37 805.00/0.079 804.37 804.39/0.003
7 1025.3 1026.5/0.123 1040.8 1042.1/0.129 1081.1 1081.2/0.007
1 1137.1 1138.3/0.105 1138.0 1139.2/0.105 1137.1 1137.4/0.029
8 1322.4 1325.1/0.204 1347.3 1350.2/0.217 1413.8 1414.0/0.011
9 1646.6 1651.8/0.316 1683.5 1689.2/0.338 1786.3 1786.6/0.018
2 1798.1 1801.4/0.181 1800.5 1803.8/0.182 1798.1 1800.0/0.106
10 1994.7 2003.9/0.461 2046.3 2056.6/0.499 2196.8 2197.4/0.027
11 2363.9 2379.2/0.645 24327 2449.9/0.705 2643.9 2644.9/0.039
3 2543.3 2551.1/0.310 2547.0 2555.0/0.312 2543.3 2549.2/0.235
12 2751.6 2775.5/0.870 2839.8 2867.0/0.959 3125.6 3127.3/0.055
13 31553 3191.3/1.139 3264.8 3306.1/1.266 3640.2 3642.9/0.075
4 3316.2 3332.4/0.490 3321.2 3337.7/0.494 3316.2 3329.9/0.415

# @¢=0 . neglecting the effect of shear deformation
* 1, =0 [ neglecting the effect of rotary inertia

Egs. (29) and (32).

Table 3 shows that the natural frequencies com-
puted by using FEM are very accurate as com-
pared with the theoretical values in the all cases.
The percentage errors in the natural frequencies
increase with the number of nodal diameters and
the order of frequencies. Both the effect of shear
deformation and the effect of rotary inertia lower
the values of natural frequencies of the ring.
Neglecting the effect of shear deformation raises
the values of natural frequencies more, especially
for the higher number of nodal diameters, than
neglecting the effect of rotary inertia.

3.3 Free vibration analysis for a circular
arc

The circular beam element developed is applied

to the analysis of free vibration of a circular arc

with subtended angle of 60°. The natural fre-

quencies of the in-plane vibration of the circu-

lar arc for hinged-hinged, clamped-clamped, and
clamped-hinged boundary conditions were com-
puted by using FEM, modelling the circular arc
with 60 elements, and considering all the effects of
shear deformation and rotary inertia.

For the comparison of the numerical results by
FEM with the ones by PSM (pseudo-spectral
method) which are presented in the works of
Lee (2003), the values of the material and geo-
metric properties of the circular arc are used as
follows.

E=200 GPa, v=0.30, p=7800 kg/m® a=1m
A=12X10"%m? [;=12X107"m*, K,=0.85

Table 4 shows that the natural frequencies com-
puted by using FEM are very accurate as com-
pared with those by PSM for all the three boun-
dary conditions. The percentage errors in the
natural frequencies increase with the order of
vibration mode. The numbers given in table 4 are
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Table 4 Dimensionless frequency parameters of the in-plane vibration of a circular arc with subtended angle

of 60°
Hinged-hinged T Clamped-clamped Clamped-hinged
Order of boundary condition boundary condition boundary condition
vibration mode
PSM* Erii%%) PSM” ErI:erE{%) PSM* ErI;(])ErN{{%)
1 33.365 33.365/0.001 52.779 52.780/0.001 42.333 42.333/0.000
2 68.985 68.986,/0.002 75.973 75.975/0.002 73.727 73.728/0.002
3 101.50 101.50/0.001 117.81 117.81/0.002 107.58 107.58/0.002
4 137.44 137.45/0.004 170.79 170.81/0.011 153.98 153.99,/0.008
5 214.73 214.76/0.016 255.14 255.20/0.024 234.65 234.70/0.019
staken from (Lee, 2003)
the dimensionless frequency parameters A; which
are defined as References

A=w pAa*/EI (33)

4. Conclusions

We developed a finite thin circular beam ele-
ment which describes quite efficiently and accu-
rately the in—plane motions of thin circular beams
in which the effects of shear deformation and
rotary inertia can be considered partially or to-
tally. The element gives exact results for linear
static problems in the case of concentrated loads
because the shape functions of the element are
exact in statics. The natural frequencies of a free
ring, which are obtained by using the element
converge rapidly from above to the theoretical
values with increasing number of elements. The
numerical results by FEM for the natural fre-
quencies of a circular arc under various boundary
conditions are in excellent agreement with those
by PSM. The stiffness and the mass matrices with
respect to the coefficient vector of shape functions
are presented in appendix to be utilized directly in
applications without any numerical integration
for their formulation.
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Appendix

The matrix [K,] is symmetric and any element

not defined is zero.

Ku;j=(El/ &) ka;

kas=2¢

kas=—2s¢

kas= (1+astay) ¢ — (1—aet+ay) sgcd
kags= (14 aet+an) ¢+ (1—aetay) sgcd
The matrix [Ma] is symmetric and any element
not defined is zero.

M= (pAa) ma;

mar=(1+ 1) 2¢

Maz=25¢

mas=—2es(s¢~pc¢) +2(1+p) (9 —s¢)
Maz=2¢

Maa=2(¢—s¢) —2(s¢—dcd)
mas=es($—spcd)

Mazs=2¢

mas=es($—scg) —2(¢—s¢)
mai= (14 12) 5 P+4(d—s9) —4(sp—dc9)

Mmas=2es(PPsdp+2¢cd—2s¢) +es($—sdcd)
—2(est et pr) (s¢—ded)

Whas5= e§%¢3+ ases(sdcd—dc2¢)
—des(sp— o) + (1+ 1) (3p—4sg+sgcyd)
+(1-e)*(¢—s¢cd)

mA%:e%% PP —eses(spcd—gc2¢)
+ (i +ed) (9—sdcy)



