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An efficient boundary-based optimization technique is applied in the numerical computation
of free surface flow problems, by reformulating them into the equivalent optimal shape design
problems. While the sensitivity in the boundary method has mainly been calculated using the
boundary element method (BEM) as an analysis means, the finite element method (FEM) is
used in this study because of its popularity and easy-to-use features. The advantage of boundary
method is that the design velocity vectors are needed only on the boundary, not over the whole
domain. As such, a determination of the complicated domain design velocity field, which is
necessary in the domain method, is eliminated, thereby making the process easy to implement
and efficient. Seepage and supercavitating flow problem are chosen to illustrate the accuracy and

effectiveness of the proposed method.
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1. Introduction

Shape optimization problems model geometric
data, such as the boundary or interface shape, as
the design variables. Because the shape should be
altered during the optimization procedure, this is
known to be more challenging than conventional
sizing design problems. Due to the importance
and superiority of shape optimization techniques,
there has been a lot of research focused on the
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theoretical and technical development of the tech-
niques over the past three decades (Haftka and
Grandhi, 1986 ; Kwak, 1994). Now the focus is
on the application of these techniques.

In a shape optimization problem, the most
popular algorithm involves the use of gradient
values to obtain an optimum shape. Though it is
well known that the gradient can be easily com-
puted by using finite difference method (FDM),
the cost of computation becomes prohibitively ex-
pensive for the large number of design parame-
ters. Besides, the FDM often produces erroneous
results and leads to a local minimum as will be
shown in this paper. Therefore, this research con-
centrates on an efficient way for gradient com-
putation, which is known as shape design sensi-
tivity analysis (DSA). Material derivative con-
cept and adjoint state equation are two common
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techniques used in the shape DSA.

The theory of shape DSA was pioneered by a
number of researchers such as Zolesio (1981),
Rousselet and Haug (1981), Choi and Haug
(1983), and Dems and Mroz (1984). Numerical
implementation was followed and divided in two
directions ~ domain and boundary approach - de-
pending on the form of the sensitivity formula. In
the domain approach, the performance function
was defined over the shape domain and the sensi-
tivity was also expressed in a domain integral
form. The finite element method (FEM) was used
as analysis means in the numerical implementa-
tion. This approach was mostly employed for the
study of optimization of elastic structures (Choi
and Seong, 1986 ; Chang et al., 1995 ; Hardee et
al,, 1999), and is now established as a main
stream technique in the shape DSA. The domain
approach, however, has a drawback in that the
shape variation vector, which is also called the
design velocity field, should be defined over the
whole domain. Recalling that the domain shape is
uniquely defined by the boundary only, an arbi-
trary domain design velocity field should be de-
fined by any means such that it conforms to the
boundary shape variation. To this end, a set of
auxiliary elasticity problems, called the boundary
displacement method, should always be solved
under the given boundary shape variation (Yao
and Choi, 1989), which increases computing
effort and time substantially. If the optimization
involves a potential flow problem as in the case
of this paper, inefficiency is more severe because
two problems of different disciplines should be
solved at the every iteration. All of this complex-
ity comes from the sensitivity expressed in a do-
main integral form. On the other hand, a bound-
ary approach in which sensitivity is expressed
in a boundary integral form has been studied as
an alternative (Burczyski and Adamczyk, 1985 ;
Choi and Kwak, 1988 ; Park et al., 1989 ; Meric,
1995). Since the sensitivity requires only the
boundary shape variation, the domain shape var-
iation is not necessary in this method. Therefore,
additional analysis like the boundary displacem-
ent method is not required either, which is the
biggest advantage of the boundary approach. The
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boundary element method (BEM) has been used
for analysis because it does not require meshing
of the entire domain and provides an accurate
boundary solution. The boundary approach, how-
ever, is much less focused than the domain ap-
proach because the BEM has limited applications,
and is accordingly less popular than the FEM.

In this paper, it is shown that the boundary
approach is also implemented excellently while
employing the FEM as analysis means. Thanks
to the advances in meshing techniques of the
FEM, comparable accuracy to the BEM can be
achieved by using dense meshing near the bound-
ary. Domain mesh generation, which was one
of the drawbacks of the FEM, is no longer an
issue due to powerful and convenient auto—mesh-
ing abilities. Then, the boundary approach com-
bined with the FEM becomes much more attrac-
tive choice. Despite these facts, no study has been
done previously in this direction.

Two free surface flow problems - seepage in a
dam and supercavitating flow due to a cavitator
with extreme high speed underwater - are con-
sidered to illustrate the efficiency of the proposed
method, even though the method is not limited to
this set of problems. It is well known that in the
free surface flow problems, the number of free-
boundary conditions is one more than the number
of boundary conditions required by the governing
boundary value problem. The problem, however,
can be reformulated into the equivalent shape
optimization problem of finding the boundary
shape that minimizes a norm of the residual of
one of the free-surface conditions, subject to the
boundary value problem with the remaining free-
surface conditions imposed. While the numerical
methods for free-surface potential flow are now
pretty mature (for an overview, see Reference
(Tsai and Yue, 1996) ), and many dedicated tech-
niques have been developed so far, applications
of shape optimization technique are found rela-
tively rare. In reference (George, 1997), jet im-
pingement problem was considered and solved
by discrete DSA which is to compute sensitivity
based on the finite dimensional state equations,
hence, does not allow use of existing analysis
code. In reference (Karkkainen et al.,, 1999), the
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same problem as (George, 1997) was studied but
the continuum DSA was used for the sensitivity
analysis. The focus was on the comparison of the
shape optimization technique with the trial type
methods. In reference (Leontieva and Huacasi,
2001), seepage problem was considered while
the BEM and discrete approach was employed.
In reference {Van Brummelenl and Segal, 2003),
flow over an obstacle in a channel was studied
with an emphasis on the convergence behavior for
sub-critical and super-critical flow during the
optimization process.

In this paper, commercial software ANSYS is
used to solve the potential flow problem. Objec-
tive function and its sensitivity are computed by
the mathematical package MATLAB using the
solutions from ANSYS. The optimization is
conducted by using the software VisualDOC in
which the cost and gradients are computed by
linking with the MATLAB functions. Some im-
plementation issues for the sensitivity analysis
and optimization procedure are also addressed in
the two example problems.

2. Equivalent Shape Optimization
for Free Surface Flow Problems

In this section, the governing equations as well
as boundary conditions for the two free surface
problems - seepage and supercavitation - are stat-
ed, followed by transforming them into the equi-
valent shape optimization problems. In both the
problems, physics of the problem is very simple -
the flow is assumed to be potential (irrotational
and inviscid) and stationary (steady-state).

The first problem is seepage in a dam, in which
water permeates through the cross section of the
dam due to the pressure difference. The purpose
is to find the shape of wetted part of the dam,
which is an important factor in the design of a
dam. The problem was considered in (Leontieva
and Huacasi, 2001), and is defined in Figure I,
in which # denotes the piezometric potential, and
us and u, are the tangential and normal compo-
nent of the seepage velocity on the boundary,
respectively. The permeability coefficient is as-
sumed as unit value for simplicity. As shown in
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Fig. 1 Seepage problem

the figure, duplicate conditions are imposed at
the boundary of wetted front, while the shape of
that boundary is not known a priori. The prob-
lem can be transformed into the equivalent shape
optimization, which is to find the shape of the
boundary I that minimizes square error of one
of the boundary conditions. In this paper, the
condition that the potential 2 should be the same
as the height v is chosen for this purpose. Then
the objective function, which is named as poten-
tial difference integral, is

WZ/(u—y)zds (1)

The potential # should satisfy the following reg-
ular boundary conditions.

u=h only,
u=y only
=0 on I <2>
u=1 on Iy

#»=0 on [,

where £ is 0.196.

Next problem is a supercavitating flow arising
underwater. This occurs when a projectile, like a
torpedo, is moving with high speed underwater.
At sufficiently high velocity, a huge cavity is
created behind the nose of the projectile, covering
the body such that it resides within the air pocket,
while only the nose of the projectile is wetted. In
this respect, the nose of the projectile is called
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Fig. 2 Supercavitiating flow problem

cavitator. The problem is described in Figure 2,
in which the parameters are non-dimensional-
ized for the sake of simplicity. More details of
the supercavitation problem and its assumptions
are well described in Ref (Choi et al., 2005). A
similar study can also be found by Kirschner
(Kirschner et al., 1995) in which the BEM was
implemented for analysis. In Figure 2, # denotes
the velocity potential, and #s and u, are the tan-
gential and normal components of fluid velocity
on the boundary, respectively. In this problem,
the flow is assumed to be axi-symmetric. Water
flows in the axial direction with a unit velocity
from the left to the right. A cavitator, which is a
disk with unit radius denoted as I3, is located
at the origin. The cavity is then formed to the
right of the disk as shown in the figure. Assum-
ing symmetry of the cavity shape, only left half
of the cavity is considered for simplicity. At the
cavity boundary I, two conditions are imposed
simultaneously, which are impermeability and
constant pressure, whereas the shape of [¢ is
not known a priori. The constant pressure condi-
tion states that the pressure p along the cavity
boundary should be equal to the vapor pressure
De, which leads to the following equation.

p—pe=1+0—ui=0 (3
where ¢ is the cavitation number defined by

a=——€°—pc (4)
70(]02

In equation (4), po, ¢ and Uj are the upstream
pressure, the density of the water and the up-
stream velocity, respectively. The objective func
tion for the equivalent shape optimization prob-
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lem is posed as the pressure difference integral as
follows.

U= | (1+o—ub)?rds (5)

Ie

which is the integral of square error of the second
boundary condition p=p.. Note here that the
radius » appears in the integral of the objective
function due to its axi-symmetric nature. Asso-
ciated regular boundary conditions are stated as
follows :

OHFb
on I}
OI’IFR (6)
on I'r
on I}

Un=0
u,=0
u=0

un=0
Un=0

In the supercavitating flow, the drag force is ob-
tained by integrating the pressure distribution
exerted on the disk surface. Evaluating this force
is important because it determines the magnitude
of the thrust required to maintain any given cavi-
ty shape. In practice, the drag coefficient (drag
force divided by the disk area) is evaluated as
follows :

C.=(1+0) —Zﬁbuinzrds (7

where . is the axial component of the unit
normal on the boundary I}. Though not used
in the optimization, the sensitivity of the drag
coefficient is also evaluated in this paper.

3. Design Sensitivity Analysis

3.1 Sensitivity analysis theory

The above optimization problem can be stated
in a more general manner by defining the objec-
tive function in the form

¥T=ﬁ¢(u, Un, Us) vds (8)

where ¥ is a function of the potential and its
derivatives #%s and #». on the boundary. Radius
7 is included only in the case of axisymmetri-
city. The optimum boundary shape I' is deter-
mined to minimize the objective function (8),
while the potential # satisfies the Laplace equa-
tion
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Viu=01in Q (9)
and the boundary conditions

u=u on Iy

1
Un=1Un on I} (10)

where the bar denotes the prescribed value, and
Iy and I, denote Dirichlet boundary and Ne-
umann boundary, respectively. The design sensi-
tivity analysis (DSA) determines the gradient of
the objective function (8) due to the shape varia-
tion. In a shape design problem, a popular way to
describe shape variation is to use the concept of
the material derivative (Zolesio, 1981). Based on
this concept, variation of a potential # due to
the shape change can be expressed as the material
derivative.

D a . 7
D B4 9L or i/ +VVu (1)

where the vector V(X) is the shape variation vec-
tor, which is also called design velocity (Choi
and Haug, 1983 ; Choi and Seong, 1986 ; Chang
et al., 1995: Hardee et al., 1999). The material
derivative of the general objective functional ¥
given by (8) is then the required sensitivity. De-
tail process of the sensitivity formula derivation is
not addressed here for brevity, but can be found
in (Choi, 1987). The final sensitivity formula for
the functional ¥is then given by

qf’=j;1,/f’(u, w; V) rds (12)
where

¥ (u, w; V) = (ustwnt taws) Vot (= sstws T sntwn) Va

o+ ) DVE — fusD Vi (13)

In this equation, DV, and DV;" are the functions
of design velocity vector V, given by

D Vs: Vk,sSk

v, (14)

DVS=DVs+
”

In the 2-D case, radius 7 should be removed in
(12) and (14). Then DV is the same as D V5" in
(14). In (12), w is the adjoint potential which
has the adjoint boundary conditions,
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w=—t/fu,, on Fd

(15)
Wn=Wn ON Fn
where W5 is the solution of the following weight-
ed residual equation

7/7)717/{)*7’(15
" (16)
:/F (Yur* + Ypu wl) vds, for V w*

where w™ is an arbitrary function defined on the
boundary. If ¥ is a sole function of #, and not of
us, then ¥,,=0, and @, becomes simply ¥ The
symbols %y, ¥u, and v, appearing in (13) and
(16) are derivatives with respect to #, us and
Un, ©.8., Yu=0y¥/du. Equation (12) shows that
¥ is a function of the primal potential u, ad-
joint potential w and the design velocity vector
V. The primal solution for # is obtained from
the boundary condition {(10). The adjoint solu-
tion for w is obtained from the adjoint bound-
ary condition (15), which is to solve the same
problem only with different boundary conditions.
Thus, in practice, solving the adjoint problem
requires only a small increase in computational
time because the problem is already set up to
solve for the potential 2. This approach is called
the boundary-based method since the sensitivity
formula is always expressed in a boundary inte-
gral form, and hence, leads to the evaluation only
on the boundary.

The derived sensitivity formula (12) is used
for obtaining sensitivity values of the functionals
such as potential difference integral (1), pressure
difference integral (5) or drag coefficient (7). For
the potential difference integral, however, the fol-
lowing expression should be added in the sensi-
tivity formula due to the presence of y, which is
the material derivative of (—y)? with respect
to y

/—2(u—y) Vids an

For the drag coefficient, #z which is the axial
component of the unit normal vector on the
boundary, is included. Then the contribution due
to the material derivative of this variable should
be added in the sensitivity formula, which is
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qugDVnSzrds (18)

where s is axial component of the unit tangent
vector on the boundary, and

DV,= m,snk (19)

3.2 Overall procedure

Based on the derived sensitivity formula, one
can carry out shape DSA, which evaluates gradi-
ents of the response with respect to each design
parameter. In practice, shape is generally express-
ed by a number of geometric functions and their
associated parameters. Then the design variables
are those finite parameters that control the shape.
If we denote the design parameter set as b={ by,
b2, -, bx}, the boundary shape, i.e., the coor-
dinates of the boundary, is a function of these
parameters as follows :

x=x(b), xCI' (20)

The shape variation vector V appearing in the
sensitivity formula is related by the design para-
meters as

ox= Z T ob:i= ;}V 6b; (21

which states that the shape variation vector is
the change of the point x on the boundary due
to the variation of each design parameter. There-
fore, n sets of the shape variation vector are
necessary. After applying this expression into the
general formula (12), the sensitivity formula ev-

entually becomes

< , ox\ .
_E/I‘J& <u, w, abl>ds abz
=3 [ ¥ w Vods-s6,  (22)

=§ GRAD: b

where GRAD; is the gradient value for the de-
sign parameter b;, which is used in the optimiza-
tion routine. Once the boundary shape is given, a
potential flow analysis can be performed under
the given boundary conditions. In this study, the
commercial package ANSYS is used for the im-
plementation of the analysis. Since ANSYS does

Design Obtsin shape
| wariable wafiaton hased

[N on FOM

; Shape
variaton ¥

Analyeiz for L Sensitdty
prineal variabie fomule P
W eV |

Primal .
Datebsse /

Re-anatysis for |
1 adjaint varisble |7

Fig. 3 Overall procedure for sensitivity calculation

not have the capability to solve the potential
flow problem, the analogy between thermal con-
duction analysis and potential flow analysis is
used in this research. Then the results of thermal
analysis are transformed by making use of the
similarity between the temperature and the veloc-
ity potential in the two types of analyses. An 8-
node quadrilateral element PLANE77 is chosen
for the analysis. In the calculation of the sensitiv-
ity, MATLAB is employed. The overall proce-
dure for the sensitivity calculation is given in
Figure 3.

3.3 Shape representation and calculation of
design velocity vector

Shape is usually expressed by a set of geometric
functions such as line, arc, and splines. In this
case, the design to be determined is a finite num-
ber of design parameters used in the geometric
functions. If the design parameter set is denoted
as b={ by, bz, ***, bs}, the boundary shape, i.e.,
the coordinates of the boundary, is a function of
these parameters. Then, the design velocity vector
V is obtained by differentiating this function with
respect to the design parameters. This requires,
however, complex manipulation of the functions.
An easier way is to employ the finite difference
concept only for obtaining the design velocity,
which is to generate geometric model for each
perturbed design parameter, and calculate the dif-
ference of the shape. The concept has been in-
troduced by Hardee et al.(1999). Then the shape
variation vector becomes

Vi(x) = ALbi{x (b+Abie:) —x(b)} (23)

8b
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where e; denotes the unit vector in the i’th de-
sign parameter direction. In fact, this is calculat-
ed for each node on the boundary of the FE
model.

Since the design velocity vector is necessary
only on the boundary, the boundary mesh is suf-
ficient to compute it. The loss of accuracy in this
approach is ignorable since we perturb only the
geometry, which is distinguished from the origi-
nal FDM that carries out the entire analysis for
each perturbed design. The computing time is also
negligible because there is neither domain mesh-
ing nor the equation solving process. This ap-
proach has definite advantage when compared to
the domain-based method. In the domain-based
method, an ‘auxiliary’ elasticity problem should
be solved merely for the purpose to determine
design velocity vector over the domain under a
specified boundary shape variation. This is called

the boundary displacement (Yao and Choi, 1989).

In the boundary method, however, this is not
necessary, which makes the process much simpler
and easier.

4. Implementing Design Sensitivity
Analysis

The numerical computation of the sensitivity
based on the shape DSA method is carried out for
the two example problems. The main interest is
on the accuracy of the sensitivity values obtained
by the method. Since there is no exact solution
available for the example problems, the sensitivity
values are compared with the values obtained
by the finite difference method (FDM), which is
to calculate sensitivity by perturbing each design
parameter by a small magnitude. Three cases of
perturbation ranging from 1%, 0.5% and 0.1%
of the design parameter magnitude are tried to
check if the FDM sensitivity converges consist-
ently. If so, it is regarded as correct, and used for
the comparison with the DSA sensitivity. A ratio
is defined, which is the DSA sensitivity divided
by the FDM sensitivity multiplied by 100. If the
ratio is 100, the two values are identical and the
DSA sensitivity is regarded as accurate. The se-
epage and cavity boundary are represented using
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the B-spline function in this study.

4.1 DSA implementation for seepage prob-
lem

The design parameters are the heights of the
seepage boundary at the 5 equally-spaced points
including the right end while the height of the
left end is fixed. Two different initial shapes -
straight line and wavy line - are tried in the sen-
sitivity evaluation. The finite element models are
generated automatically by free meshing function
of ANSYS as given in Figure 4 for the straight
and wavy seepage line. The sensitivity values of
the potential difference integral are compared in
Table 1. Note that in the case of FDM sensitivity,
6 more analyses are carried out to compute sensi-
tivity, while the DSA sensitivity requires about
0.5 more analysis time is needed for the adjoint

¢

: ;
4 i
H

i

1
L
LI

(a) Straight line model

(b) Wavy line model

Fig. 4 Two finite element models in the seepage

problem
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Table 1 Sensitivity comparison in the seepage problem
(a) Straight line

function design IZ:)%I\;I (l;]?l;;l) (I(:)?;f) DSA ratio (%)
0.4 —0.0037 —0.0041 —0.0042 —0.0178 423.65
0.52 —0.0361 —0.0368 —0.0374 —-0.0375 100.24
¥in Eq. (1) 0.64 —0.0321 —0.0329 —0.0335 —0.0336 100.45
=0.00693 0.76 —0.0252 —0.0258 —0.0263 —0.0264 100.39
0.88 —0.0123 —0.0129 —0.0133 —0.0135 100.99
| —0.0094 —0.0095 —0.0095 —0.0100 104.64
(b) Wavy line
function design IEF%I\;[ (1(:).1?2/0/[) (I:)?ol\/:) DSA ratio (%)
0.6 —0.0117 —0.0115 —0.0123 0.0320 ~265.11
0.8 0.0798 0.0785 0.0774 0.0769 99.67
¥in Eq. (1) 0.8 0.0117 0.0107 0.0103 0.0099 100.63
=0.00777 0.9 0.0206 0.0196 0.0187 0.0179 96.70
0.9 —0.0226 —0.0238 —0.0243 —0.0245 99.45
1 0.0219 0.0215 0.0211 0.0257 122.14
solution. The values of the FDM sensitivity for L A N
the three perturbation values agree well with each O c TG
other and that of DSA sensitivity, which shows 4
that the DSA sensitivity is accurate. The overall 3 1in 172
accuracies are also fine in both the straight and r=1 -~ »—— ol -
wavy line cases. However, the accuracies of the (a) Uniform interval
first design parameter, which is the height at the /
right end, are found bad in common. The reason g:-. é >c,
might be attributed to the fact that the gradient 6 ¢ ¢ - |
variables such as #», #x and uy are not accurate — r
at the corner, which affects the accuracy of the r=1 7‘

sensitivity.

4.2 DSA implementation for supercavitation
problem

Sensitivity values are computed for two func-
tions, pressure difference integral and drag coeffi-
cient, in the supercavitating flow problem. To
describe the cavity shape, two height parameters
¢1 and ¢, which are located at the middle and
the end of the cavity, are considered (see Figure
5(a)). The length of the cavity /. and the cavi-
tation number ¢, which is a non-shape parame-
ter, are considered as well. The design parame-
ters are, therefore, ¢, ¢, /. and 0. The cavity
length is 5 and the slope at the end of the cavity
is assigned a direction vector (1, 0) in order to

(b) Non-uniform interval

Fig. 5 Design parameters for the cavity shape

Fig. 6 Initial finite element model with free-meshing
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Table 2 Sensitivity comparison of the two functions with the free-mesh model in the supercavitation problem

function design design W FDM FDM FDM T DSA ratio (%)
parameter value (1%) (0.5%) (0.1%)

C1 1.50 1 —0.362 —0.176 0.324 —0.681 —210.0

¥in Eq. (5) C2 2.00 0.629 0.665 —3.353 0.534 —159
=0.2804 le 5.00 —0.074 —0.080 —0.394 —0.010 2.6

o 0.16 —0.209 N —0.211 —0.212 —0.212 100.1

1 1.50 —0.371 —1.398 —1.029 0.529 —51.4

Cqin Eq. (7) C2 2.00 1.564 —0.963 —9.183 —0.126 1.4
=0.5976 le 5.00 —0.251 —0.884 —3.555 —0.030 0.8

o 0.16 L 1.000 1.000 1.000 1.000 100.0

Table 3 Sensitivity comparison of the two functions with the mapped-mesh model in the supercavitation

problem
. design design FDM FDM FDM .
funct DSA tio (%
tnetion parameter value (1%) (0.5%) (0.1%) ratio (%)
o) 1.50 —0.642 —0.642 —0.642 —0.672 104.6
¥in Eq. (5) Cz 2.00 0.536 0.533 0.532 0.544 102.2
=0.2715 le 5.00 —0.063 —0.063 —0.064 —0.020 317
o 0.16 | —0.209 —0.211 —0.212 —0.212 100.1
a 1.50 0.616 0.617 0.618 0.564 91.3
C.in Eq. (7) I 2.00 —1.156 —0.156 —0.156 —0.137 87.9
=0.5671 le 5.00 —0.034 —0.034 —0.035 —0.043 122.7
o 0.16 L 1.000 1.000 1.000 1.000 100.0

ensure symmetry. Finite element model by free
meshing function is shown in Figure 6. To check
whether consistent sensitivity is obtained, three
perturbation values, 1%, 0.5% and 0.1%, are tried
for the FDM. The resulting sensitivity values are
compared in Table 2, in which the FDM sensi-
tivity values of the three different perturbations
do not agree at all. The reason is that unlike the
seepage problem, the auto-meshing produces a
quite different mesh for a slight change in shape
in this problem. To avoid this, mapped-meshing,
which is a more stable mesh pattern, is tried as
shown in Figure 7. The sensitivity values are com-
pared in Table 3. The three FDM sensitivity
values are now in good agreement, and also agree
with the DSA sensitivity. However, the ratio for
the design parameter /; is still inaccurate. This
is due to the inaccuracy of the FEM solution
for the normal velocities, #, and w»,, near the
cavity corner on the right end boundary %,
which 1s the symmetry plane. On this boundary,
the velocity tends to show a singular behavior

et

Fig. 7 [Initial finite element model with mapped-
meshing

unless the cavity shape ends orthogonal to I%.
Unlike the other design parameters, /. yields a
non-zero shape variation vector on [k, and
hence, produces an inaccurate result. To reduce
this behavior, a cavity of a smoother shape having
a near-orthogonal corner is considered in which
¢ is 1.8 as shown in Figure 8. The sensitivity
comparison of the smoother cavity shape shows
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much better accuracy as indicated in Table 4. It
is interesting to note that the DSA sensitivitys
using the free-mesh model and the mapped-
mesh model agree well. This is shown in Table
5. Though mapped-meshing is superior in mesh
quality to the free-meshing, it is not advisable
because much more human effort is needed for
the mesh construction. Free-mesh, however, can

Fig. 8 Mesh model with smoother cavity shape
Table 4 Sensitivity comparison of the two functions
with smoother cavity shape in the super-
cavitation problem
. design FDM ratio
funct
unction parameter | (0.1%) DsA (%)
a —0.104 | —0.119 | 114.6
¥in Eq. (5) C2 0.207 0.210 | 101.6
=0.1228 le —0.047 | —0.055 | 1174
o —0.678 | —0.679 | 100.1
a 0.495 0.475| 96.0
Cqin Eq. (7) C —0.132 | —0.127 | 96.2
=0.7373 le —0.044 | —0.055 | 125.3
o 1.000 1.000 | 100.0

Table 5 Sensitivity comparison of the two functions
for different mesh model in the superca-
vitation problem

function design DSA DSA  |ratio

parameter |free-mesh|{map-mesh| (%)

15} —0.681 | —0.672 | 98.7

. C2 0.534 0.544 |102.0
Eq.

YinEq. (5| —0.010 | —0.020 |201.0

g —0212 | —0.212 {100.0

a 0.529 0.564 |106.6

. Cz —0.126 | —0.137 |109.0
Eq.

CainEq- (7)) —0.030 | —0.043 |143.5

o 1.000 1.000 {100.0

be generated easily by employing automatic mesh-
ing capability. Since the sensitivity values are the
same for the two mesh models, free-mesh can also
be employed in the optimization.

5. Implementing Optimization

In this section, implementation of the optimi-
zation task using the gradient-based algorithm is
discussed. The commercial package VisualDOC
is chosen for this purpose. In the gradient com-
putation, the FDM is also used for comparing
the result with that of the proposed shape DSA
method. In the seepage problem, the optimization
is conducted using the design parameters con-
sidered in the DSA implementation. The same
shape is obtained after optimization from the two
initial designs, as shown in Figure 9. The opti-
mization is also conducted using the FDM bas-
ed sensitivity. Again, the same optimum shape is
obtained, but at the expense of 5 times longer
computing time in this case. The optimum shape
is also compared in Table 6 with the analytical
solution given from reference (Leontieva and
Huacasi, 2001) which is

le_/"‘ K (sin® x)sin xdx
o J(1—asin’y) (1—Bsin’y) (24)
0<y<7/2
z K (cos® x)sin xdx
= hot bt
y=h -£ J(A—asin®y) (1—Bsin’y)  (25)
0<y<n/2

> 0.8
0.4
0.3

0.1 ~e Opt, from stralght fine

o &
0 02 0.4 0.8 0.8
X

6.2 - Opt, from wavy shape !

Fig. 9 Optimum shapes in the seepage problem
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where /=0.978 and K(x) denotes the complete
elliptic integral of the first kind ; @, S (0, 1) are
parameters that define the problem. In this table,
the first column indicates x coordinate of the
equally-spaced design parameter points and sec-
ond column is y coordinate obtained by analy-
tical solution. The third column presents the so-
lution by the DSA. The fourth column includes
the ratio of the DSA solution divided by the
analytical solution.

In the supercavitation problem, the same design
parameters and cavitator used in the DSA study
are also used for the optimization. The problem is
to find the cavity shape as well as the cavitation
number under the given cavity length which is 5
in this case. During the optimization, the free-
mesh model is used. The optimum cavity shapes
are compared in Figure 10. The upper solid cur-
ves are the optimum shapes of the cavity by the
DSA method starting from the initial shape of

Table 6 Comparison with the analytical and opti-
mum solution in the seepage problem

2 rati
atio
x Analytical DSA (%)
solution optimum
0.9780 0.4050 0.4121 101.75
0.8802 0.5282 0.5240 99.20
0.7824 0.6167 0.6140 99.56
0.6846 0.6889 0.6869 99.71
0.5868 0.7505 0.7481 99.68
0.4390 0.8075 0.8040 99.57
0.3912 0.8595 0.8555 99.53
0.2934 0.9030 0.9001 99.68
0.1956 0.9393 0.9403 100.11
0.0978 0.9747 0.9733 99.86
25 o _—
20 oo
w 1.5
® g e
~ 0 P - iniial free
e ODELM DSA free
§ |
0s b E e optimuen FDM froe
|
] !

T b

35 &0 45 &0 B

Fig. 10 Initial and optimum cavity shapes in the
supercavitation problem
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dashed straight line, which is plausible and close
to an elliptical shape as can be expected. Unlike
the seepage case, wrong optimum shape is ob-
tained by the FDM method in this problem due
to the inaccurate sensitivity as can be seen from
the grey curve of the figure. In Figure 11, the ob-
Jjective function histories with respect to the num-
ber of iterations are plotted for the different ap-
proaches. In this figure, “map” and “free” denote
mapped-mesh and free-mesh model, respectively.
The DSA method for the two mesh models shows
almost the same behavior. The DSA methods for
the two mesh models as well as the FDM with
mapped-mesh model show almost the same be-
havior. The result for the FDM with free-mesh
model, however, does not show convergence,
which demonstrates that if the FDM should be
used in the optimization for any reason, the free-
mesh should be avoided. Instead, the mapped-
mesh, though it requires more human effort in
construction, should be employed. A number of
optimum solutions are investigated for various
cavity lengths. The relation between the cavita-
tion number ¢ and the drag coefficient cq is then
obtained using these results. This is to verify the
results of the proposed method with the theore-
tical result by Logvinovich (1972), which is given
by

ca=0.82(1+0) (26)

The results are obtained for two numbers of
design parameter points, which are #.=2 and 5.
Graph of the drag coefficient versus the cavita-
tion number is shown in Figure 12. In this figure,

g - [ GA free
“:33 04 --m - DSA map
g : ook~ FDM free
£ 0.3 beprrrrera e LM mED
5.,

Ve
© Ty
£ AN
fet] 01 oY
B
£
(&)

1 3 & 7 9 1
lteration
Fig. 11 Objective function history in the supercavi-
tation problem
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Fig. 12 Comparison between theoretical and nu-

merical results of ¢ and Cy

the results by the ».=5 are closer to the analy-
tical solution than the results by the n.=2. This
demonstrates that for a closer result, the number
of height parameters should be further increased
to accommodate the rapidly varying cavity shape
near the beginning of the cavity to reduce the
error in prediction. To reflect this more effici-
ently, a non-uniform interval is examined, which
places more parameters at the beginning of the
cavity shape as shown in Figure 5(b). The result
from this simulation is included in Figure 12 in
which the line is found to be much closer to the
theoretical line.

6. Discussions and Conclusions

In this study, an efficient boundary-based DSA
technique in which the FEM is used for the an-
alysis has been proposed for the optimization
process in the potential flow problems. Though
the numerical examples considered in this paper
are free surface flow problems, this technique
can be applied to any kind of shape optimization
problem associated with potential flow. Due to
the feature that the sensitivity formula is in bound-
ary integral form, the design velocity vectors are
needed only on the boundary, and not over the
whole domain. Then the surface or boundary
mesh generation is sufficient in evaluating the
design velocity vector. Unlike the domain meth-
od, there is no need to solve an auxiliary elastici-
ty problem in which the domain design velocity
fields are determined based on the given bound-

Joo Ho Choi, H. G. Kwak and R. V. Grandhi

ary shape variation.

A seepage and supercavitation problems are
chosen to illustrate the proposed methodology in
which the optimum shapes are sought to mini-
mize the square error integral of the one of the
duplicate boundary conditions defined on the free
boundary. In the study for sensitivity evaluation,
the accuracies of the DSA method are compared
to those by the FDM. For the both problems,
the free-mesh model is employed for the flow
analysis, which is conveniently generated using
the automatic meshing capability. The results of
supercavitation problem, however, indicate that
the sensitivity by the FDM is not accurate in the
free-mesh model due to the quite different mesh
generation for a slight change of the shape in this
problem. This is avoided by using mapped-mesh
model, which requires more human labor, and
hence, is not advisable in practical optimization.
Since the sensitivity values by the DSA method
are found to agree well whether free-mesh or
mapped-mesh is employed, convenient free-mesh
is employed during the optimization. The shape
optimization result of seepage problem is com-
pared to the analytical solution, and found to
have close agreement. Shape optimization is also
carried out for supercavitation problem. In this
case, optimization by the FDM is carried out for
comparison, from which wrong optimum solu-
tion is observed. A number of optimizations are
investigated for various cavity lengths for valida-
tion purposes. The relationship between the cavi-
tation number and drag coefficient is then ob-
tained and compared to the theoretical result. It is
found that the results get closer to the analytical
solution as the number of design parameters is
increased.
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