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Off-line PD Model Classification of Traction Motor Stator Coil Using BP

Seong-Hee Park' , Dong-Uk Jang*, Seong-Hwa Kang** and Kee-Joe Lim***

Abstract - Insulation failure of traction motor stator coil depends on the continuous stress imposed on
it and knowing its insulation condition is an issue of significance for proper safety operation. In this
paper, application of the NN (Neural Network) as a scheme of the oft-line PD (partial discharge)
diagnosis method that occurs at the stator coil of a traction motor was studied. For PD data acquisition,
three defective models were made; internal void discharge model, slot discharge model and surface
discharge model. PD data for recognition were acquired from a PD detector. Statistical distributions
and parameters were calculated to perform recognition between model discharge sources. These
statistical distribution parameters are applied to classify PD sources by the NN with a good recognition

rate on the discharge sources.
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1. Introduction

Today, railroad transportation has some merits as
compared to other types of transportation; mass trans-
portation, accurate on time, low pollution, agreeableness,
etc. But, the traction motor of the EMU (electric multiple
unit) for high capability and high speed has a problem with
insulation reliability caused by transient surge and partial
over-heating because it has the chance to develop to the
point of degradation, leading to insulation failure. This
insulation failure can be caused by occurred PD from some
defects of the insulated stator coil of the traction motor.
The PD phenomena in the stator coil create a variable path
from some of the defects; slot discharge, void discharge
(internal discharge of insulator), surface discharge, etc.

However, estimation of the PD sources is a very difficult
thing to carry out. Why is PD so important? Although the
magnitude of such discharges is usually small, they cause
progressive deterioration and may lead to ultimate failure.
Therefore, PD detecting and discriminating discharge
sources are crucial to maintaining the flow of continuity in
a railway system. It is important to use PD distribution for
estimating some defects because it contains a great deal of
information on coil condition.

We composed three defected PD occurrence models;
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void discharge of the insulator, surface discharge, and slot
discharge. PD data was acquired from the PD detecting
method, IEC 270, and used to calculate statistical distri-
bution. We then studied PD distribution characteristics on
three defected PD models and used these characteristics as
input data of the BP (back propagation) algorithm for
classification of PD sources.

2. Experimental
2.1 Specimens for PD occurrence

Fig. 1 shows the stator coil shape of the traction motor
and cross sectional viewer of specimens of three models.
The specimens are made with polyamide and silicon resin
and processed by VPI (vacuum pressure impregnation)
treatment.
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Fig. 1 Cross sectional viewer and PD model shape

2.2 Test procedure and data process

PD signals were collected with the PD detector system
(BIDDLE instrument, AVTM 662700Ja), which is a
computer controlled system for PD data acquisition and
analysis. According to IEC 270, the PD pulses are inte-
grated where the maximum value of the integrated signal is
proportional to the apparent charge. Fig. 2 shows a block
diagram of the PD data acquisition and process.
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Fig. 2 Block diagram of test procedure for acquisition of
PD data

Statistical distributions were calculated from original PD
signals and the distributions were used as BP input data.
Fig. 3 illustrates the procedure of PD data for calculating
statistical distributions.

Fig. 3 Block diagram of PD data process

3. Result

3.1 PD signal distribution

The relationship between the PD magnitude and inten-
sity as related to PD phase angle can be displayed using
either a two or three dimensional pattern. Three dimen-
sional distributions as compared to two dimensional distri-
butions might better discriminate PD appearance and have
the advantage of visible classification. But three dimen-
sional distributions are more complex. Furthermore, three
dimensional distributions are difficult to analyze quanti-
tatively. In general, for convenience of comparison, two
dimensional distributions have been chosen for use. And
the BP network is applied as a learning scheme. These
distributions were derived from statistical distributions of
individual PD events by taking appropriate averages. Three
dimensional distributions are @(phase) - (discharge magni-
tude) - n(number of pulse). And two dimensional distribu-
tions are g-n, @-qa(average discharge magnitude), ¢-n, ¢-
(max(maximum discharge magnitude) - distributions. Two
dimensional distribution totally can be presented as four
types; Hn(q), Hn(¢), Hqn(¢) and Hq(¢).

Hn(q) distribution presents pulse count distribution,
which represents the number of observed dis-charges in
each discharge magnitude.

Hn(p) distribution presents pulse count distribution,
which represents the number of observed discharges in
each phase window as a function of the phase angle.

Hgn(ep) distribution presents the mean pulse height
distri-bution, which represents the average amplitude in
each phase window as a function of the phase angle.

Hq(o) distribution presents the maximum pulse height
distribution, which represents the maximum amplitude in
each phase window as a function of the phase angle.

Fig. 4 presents two dimensional distributions calculated
from ¢ -g-n distribution.

Hn(q) distribution presents surface discharge charac-
teristic bigger than other discharges.

Hgn(e) distribution is similar to all discharge sources,
but surface discharge is slightly more than other types of
discharge in the negative period.

Also, Hn(g) distribution in negative half cycle surface
discharge shows to be remarkably bigger than other types
of discharge. However, in positive half cycle, slot
discharge has a remarkably big value. Finally, Hq(o)
distribution has similar characteristics to Hn(g) distribution.

In conclusion, surface discharge and slot discharge have
extraordinarily large value on PD magnitude and number
of PD pulses. But void discharges have a very small value
compared to the other two discharge sources. In this paper
we used g-n and @-n distributions as input data of the BP
learning algorithm because these distributions have good
information among PD sources.



Seong-Hee Park, Dong-Uk Jang, Seong-Hwa Kang and Kee-Joe Lim 225

400 —_— — 60—
. .
‘ ‘ ‘ 4 . ’
o 300 | ‘ 45 4 "
@ i LY .
S | 5 4 Ch * e
=% i & 2 i vy ® e
'S 00 4 . fg V.
f = L L)
5 | g0 &f LT AN
€ H aes e A 3
3 h g 3 | 1
< 100 A L 5 |
| s . . & 15 - . .
; ﬁ/,f(\l\‘ ‘ il
0w  eS38annannnnn co
0 75 150 0 e
0 90 180 270 3480
discharge magnitude(pC)
¢ normal -wisternal &~ slot e suface | oo nterad® et e surface

(a) Hn(q) distribution (b) Hqn(e) distribution
00— — — 17 200
.
80 4 i : .
m g 150
H 1‘ i E *»
g 00 i H": | 8 a e
| § : 4 e | § 100 v )
[ I i H
13 @] s o ow E L oo nm
£ : A ! ] P eim
3 Y | E 50 '3 6O user O
20 a . f‘\' ] @ SoseErents
24 i SR
o smbstttiy, Bherk S 0 -
0 20 180 270 360 | 0 %0 180 270 34
phase . phase
| & normal - ® internal --a4--slot ® surface \‘ +—nomal @ internal s slot & surface
(c) Hn(g) distribution (d) Hq(p) distribution

Fig. 4 Distribution of PD signal

4. Comparison of two methods
4.1 Selection of PE

As a BP algorithm, PE (processing elements) is an
important parameter because PE affects the learning result.

The hyperbolic tangent function was evaluated replacing
the logistic function. This function shows its RMSE result,
which has 1,000 epochs for making RMSE less than 0.1.
This epoch is tiny compared to the logistic function. Next,
the neuron number of hidden layers was determined. Each
of 10, 20, 100, 150, 200 and 300 neurons of hidden layers
were investigated as shown in Fig. 5. Each result draws
different curves in the region of less than 400 epochs but it
approaches similar values near 1,000 epochs. 10 and 20
neurons have reached to the least RMSE value and have
been selected as the neuron number of hidden layers. BP
learning is sensitive to initial weighted value. If the value is
incorrectly selected, BP learning is driven to the local
minimum point. To investigate the effect of the initial
weighted value for BP learning, initial weighted values of
0.1, 0.3, 0.5, 0.7 and 0.9 are used. And the results are
shown in Fig. 6 (a) and (b). Initial weighted value of 0.1
has the least RMSE. And Fig. 7 (a) and (b) present the
results of sclection learning rate. Completed ANN
(artificial neural network) by BP learning constructed
consists of input layer (250), hidden layer (10), output
layer (2), active function (tanh) learning rate (between 0.1

and 0.2) and initial weighted value (0.1). Train data set for
BP learning and classification data set for evaluating the
performance of ANN classification are each 50 set per PD
source with the total set at 400.
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4.2 Classification result
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The pattern of the surface discharge and slot discharge
remarkably differed from those of other discharge sources
as PD characteristics. This is readily discernible from Fig.
8 and Fig. 9. Fig. 8 shows RMSE (root mean square error)
variation value during the processing learning discharge
pattern. And Fig. 9 shows training result and classification
result between four patterns. During the training process,

this output is forced to be equal to ‘0°, ‘0.3°, ‘0.5’ and 0.8’
for the cases of normal discharge, internal discharge, slot
discharge and surface discharge. Between these total
patterns, 50 patterns have been used in the training data,
and the remaining 50 patterns have been used in the
classification data. At the end of the learning process, the
network is successful in discriminating between four
different discharge sources of coils with a success rate of
100% in both the training and classification data. As a
result of the learning process, the learning capability of the
NN with BP is excellent in this case.
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Fig. 9 Distribution of PD signal

5. Conclusion

In this paper, PD distribution characteristics are studied
as a PD source classification on highly occurring
probability defects in the stator coils of traction motors. As
a result, we came to the following conclusions.

1. The statistical distribution of PD data is a good tool of
discrimination among PD sources.

2. Its success recognition rate becomes 100% using the
BP network as a PD classification.

3.NN using the BP technique with input parameter
derived from discharge pulse shape is useful in the
discrimination of PD patterns.
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