전력선통신을 위한 고압 배전선로의 임피던스 특성

Impedance Characteristics of Overhead Medium-Voltage Power lines for Power Line Communication

  • 천동완 (아주대학교 전자공학과) ;
  • 박영진 (한국전기연구원 전기정보망 기술연구그룹) ;
  • 김관호 (한국전기연구원 전기정보망 기술연구그룹) ;
  • 신철재 (아주대학교 전자공학과)
  • Chun Dong-wan (Department of electrical and computer engineering, Ajou university) ;
  • Park Young-jin (Korea electrotechnology research institute) ;
  • Kim Kwan-ho (Korea electrotechnology research institute) ;
  • Shin Chull-chai (Department of electrical and computer engineering, Ajou university)
  • 발행 : 2005.11.01

초록

본 논문에서는 전력선 통신(PLC) 시스템에 사용되는 고압 배전선로의 임피던스 특성을 해석하였다. 해석을 위해 전력선 통신 네트워크의 2포트 등가모델을 구현하였다. 등가모델 및 기본적인 전송선로 이론을 적용하여 전력선 통신 입력 단에서의 임피던스를 계산하였다. 또한 고압 커플러, 동축케이블 등의 특성을 제거한 전력선 자체의 입력임피던스를 계산하였다. 계산결과의 검증을 위해 고압 실증시험장에서 측정을 하였다. 측정결과 전력선 자체의 입력 임피던스는 $200\~300\;{\Omega}$의 값을 가졌으며, 주파수가 증가할수록 전력선 특성임피던스의 절반에 수렴하였다. 또한 측정치와 계산치가 매우 유사하였다.

In this paper, impedance characteristics of overhead medium-voltage (MV) power line for power line communication (PLC) is analyzed. For analysis, a two-port equivalent network model of MV power lines is derived. By applying the equivalent model and basic transmission line theory, input impedance at the signal induction part is calculated. And also calculated input impedance of power line itself that the medium voltage coupler and coaxial cable effect are removed. For verification, impedance of power lines is measured at a test field for an MV PLC. The results show that impedance of MV power line itself is between $200\;{\Omega}\;and\;300\;{\Omega}$ and converges to a half of their characteristic impedance with increasing frequency. And also measured data is very similar to calculated data.

키워드

참고문헌

  1. H. Meng, S. Chen, Y. L. Guan, C. L. Law, P. L. Gunawan, E. Lie, T. T, 'A Transmission Line Model for High-Frequency Power Line Communication Channel', Power System Technology, International Conference on, Vol 2, pp 1290-1295, Oct. 2002 https://doi.org/10.1109/ICPST.2002.1047610
  2. Olsen, R. G, 'Technical considerations for wideband powerline communication-a summary', Power Engineering Society Summer Meeting, 2002 IEEE, vol. 3, pp 1186-1191, 2002 https://doi.org/10.1109/PESS.2002.1043485
  3. Y. F. Chen, T. D. Chiueh, 'A 100- Kbps Power-Line Modem for Household Applications', VLSI Technology, Systems, and Applications, 1999. International Symposium on, pp 179-182, June 1999 https://doi.org/10.1109/VTSA.1999.786029
  4. R. C. Madge, G. K. Hatanaka, 'Power Line Carrier Emission from Transmission Lines,' IEEE Trans. on Power Delivery, vol. 7, no. 4, pp 1775-1785, Oct. 1992 https://doi.org/10.1109/61.156978
  5. 천동완, 이진택, 박영진, 김관호, 신철재, '전력선 통신 시스템의 입력임피던스 계산,' 한국통신학회논문지, 제 29권, 9A호, pp 983-990, Sep. 2004
  6. M. E. Hardy, Sasan Ardalan, J. B. O'Neal, ' A model for communication signal propagation on three phase power distribution lines,' IEEE Trans. on Power Delivery, vol. 6, no. 3, pp 966-972, July 1991 https://doi.org/10.1109/61.85835
  7. B. N. Das, S. B. Chakrabarty and K. Siva Rama Rao, 'Capacitance of Transmission Line of Parallel Cylinders in the Presence of Dielectric Coating', IEEE Trans. on Electromagnetic Compatability, Vol. 37, pp 94-96, Feb. 1995 https://doi.org/10.1109/15.350246
  8. Kenneth C. Chen, 'Time harmonic solutions for a long horizontal wire over the ground with grazing incidence,' IEEE Trans. on Antenna and Propagation, vol. AP-33, no. 3, pp 233-243, Mar. 1985 https://doi.org/10.1109/TAP.1985.1143570
  9. David M. Pozar, Microwave Engineering, Addison Wesley 1993