References
- Beazley, W. D., Gaze, D., Panske, A., Panzig, E., and Schallreuter, K. U., Serum selenium levels and blood glutathione peroxidase activities in vitiligo. Br. J. Dermatol., 141, 301-303 (1999) https://doi.org/10.1046/j.1365-2133.1999.02980.x
- Boissy, R. E. and Manga, P., On the etiology of contact/ occupational vitiligo. Pigment Cell Res., 17, 208-214 (2004) https://doi.org/10.1111/j.1600-0749.2004.00130.x
- Bowers, R. R., Nguyen, B., Buckner, S., Gonzalez, Y., and Ruiz, F., Role of antioxidants in the survival of normal and vitiliginous avian melanocytes. Cell Mol. Biol. (Noisy-legrand), 45, 1065-1074 (1999)
- Brusselmans, K., Vrolix, R., Verhoeven, G., and Swinnen, J. V., Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit Fatty Acid synthase activity. J. Biol. Chem., 280, 5636-5645 (2005) https://doi.org/10.1074/jbc.M408177200
- Chatterjee, S., Premachandran, S., Bagewadikar, R. S., and Poduval, T. B., The use of ELISA to monitor amplified hemolysis by the combined action of osmotic stress and radiation: potential applications. Radiat. Res., 163, 351-355 (2005) https://doi.org/10.1667/RR3313
- Dooley, T. P., Gadwood, R. C., Kilgore, K., and Thomasco, L. M., Development of an in vitro primary screen for skin depigmentation and antimelanoma agents. Skin Pharmacol., 7, 188-200 (1994) https://doi.org/10.1159/000211294
- Gauthier, Y., Cario Andre, M., and Taieb, A., A critical appraisal of vitiligo etiologic theories. Is melanocyte loss a melanocytorrhagy? Pigment Cell Res., 16, 322-332 (2003) https://doi.org/10.1034/j.1600-0749.2003.00070.x
- Giovannelli, L., Bellandi, S., Pitozzi, V., Fabbri, P., Dolara, P., and Moretti, S., Increased oxidative DNA damage in mononuclear leukocytes in vitiligo. Mutat. Res., 556, 101-106 (2004) https://doi.org/10.1016/j.mrfmmm.2004.07.005
- Jimbow, K., Chen, H., Park, J. S., and Thomas, P. D., Increased sensitivity of melanocytes to oxidative stress and abnormal expression of tyrosinase-related protein in vitiligo. Br. J. Dermatol., 144, 55-65 (2001) https://doi.org/10.1046/j.1365-2133.2001.03952.x
- Katiyar, S. K., Afaq, F., Perez, A., and Mukhtar, H., Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis, 22, 287-294 (2001) https://doi.org/10.1093/carcin/22.2.287
- Katiyar, S. K. and Mukhtar, H., Tea antioxidants in cancer chemoprevention. J. Cell Biochem. Suppl., 27, 59-67 (1997)
- Kessler, M., Ubeaud, G., and Jung, L., Anti- and pro-oxidant activity of rutin and quercetin derivatives. J. Pharm. Pharmacol., 55, 131-142 (2003) https://doi.org/10.1211/002235702559
- Mi, Y. and Zhang, C., Protective Effect of Quercetin on Aroclor 1254-Induced Oxidative Damage in Cultured Chicken Spermatogonial Cells. Toxicol Sci., In press (2005)
- Montes, L. F., Diaz, M. L., Lajous, J., and Garcia, N. J., Folic acid and vitamin B12 in vitiligo: a nutritional approach. Cutis, 50, 39-42 (1992)
- Naziroglu, M., Karaoglu, A., and Aksoy, A. O., Selenium and high dose vitamin E administration protects cisplatin-induced oxidative damage to renal, liver and lens tissues in rats. Toxicology, 195, 221-230 (2004) https://doi.org/10.1016/j.tox.2003.10.012
- Nordberg, J. and Arner, E. S., Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic. Biol. Med., 31, 1287-1312 (2001) https://doi.org/10.1016/S0891-5849(01)00724-9
- Onuki, J., Almeida, E. A., Medeiros, M. H., and Mascio, P. D., Inhibition of 5-aminolevulinic acid-induced DNA damage by melatonin, N-acetyl-N-formyl-5-methoxykynuramine, quercetin or resveratrol. J. Pineal Res., 38, 107-115 (2005) https://doi.org/10.1111/j.1600-079X.2004.00180.x
- Park, C. H., Chang, J. Y., Hahm, E. R., Park, S., Kim, H. K., and Yang, C. H., Quercetin, a potent inhibitor against betacatenin/ Tcf signaling in SW480 colon cancer cells. Biochem. Biophys. Res. Commun., 328, 227-234 (2005) https://doi.org/10.1016/j.bbrc.2004.12.151
- Placzek, M., Gaube, S., Kerkmann, U., Gilbertz, K. P., Herzinger, T., Haen, E., and Przybilla, B., Ultraviolet BInduced DNA Damage in Human Epidermis Is Modified by the Antioxidants Ascorbic Acid and d-alpha-Tocopherol. J. Invest. Dermatol., 124, 304-307 (2005) https://doi.org/10.1111/j.0022-202X.2004.23560.x
- Quevedo, W. C., Jr., Holstein, T. J., Dyckman, J., and McDonald, C. J., The responses of the human epidermal melanocyte system to chronic erythemal doses of UVR in skin protected by topical applications of a combination of vitamins C and E. Pigment Cell Res., 13, 190-192 (2000) https://doi.org/10.1034/j.1600-0749.2000.130312.x
- Quintanilla, R. A., Munoz, F. J., Metcalfe, M. J., Hitschfeld, M., Godoy, J. A., and Inestrosa, N. C., Trolox and 17beta -estradiol protects from the amyloid-beta -peptide neurotoxiticy by a mechanism that involves modulation of the Wnt signaling pathway. J. Biol. Chem., In press (2005)
- Saffari, Y. and Sadrzadeh, S. M., Green tea metabolite EGCG protects membranes against oxidative damage in vitro. Life Sci., 74, 1513-1518 (2004) https://doi.org/10.1016/j.lfs.2003.08.019
- Schallreuter, K. U., Moore, J., Wood, J. M., Beazley, W. D., Gaze, D. C., Tobin, D. J., Marshall, H. S., Panske, A., Panzig, E., and Hibberts, N. A., In vivo and in vitro evidence for hydrogen peroxide (H2O2) accumulation in the epidermis of patients with vitiligo and its successful removal by a UVBactivated pseudocatalase. J. Investig. Dermatol. Symp. Proc., 4, 91-96 (1999) https://doi.org/10.1038/sj.jidsp.5640189
- Sies, H., Oxidative stress: oxidants and antioxidants. Exp. Physiol., 82, 291-295 (1997) https://doi.org/10.1113/expphysiol.1997.sp004024
- Smit, N., Vicanova, J., Cramers, P., Vrolijk, H., and Pavel, S., The combined effects of extracts containing carotenoids and vitamins E and C on growth and pigmentation of cultured human melanocytes. Skin Pharmacol. Physiol., 17, 238-245 (2004) https://doi.org/10.1159/000080217
- Valko, M., Izakovic, M., Mazur, M., Rhodes, C. J., and Telser, J., Role of oxygen radicals in DNA damage and cancer incidence. Mol. Cell Biochem., 266, 37-56 (2004) https://doi.org/10.1023/B:MCBI.0000049134.69131.89
-
Yoon, W. J., Won, S. J., Ryu, B. R., and Gwag, B. J., Blockade of ionotropic glutamate receptors produces neuronal apoptosis through the Bax-cytochrome C-caspase pathway: the causative role of
$Ca^{2+}$ deficiency. J. Neurochem., 85, 525-533 (2003) https://doi.org/10.1046/j.1471-4159.2003.01724.x